19970129 117

Performance Analysis of Dynamic Routing Protocols in a LO\»I

Farth Orbit Satellite Data Network

THI:SIS

Richard I'. Janoso

Captain, USAF

AFIT/GE/ENG/96D-08

TDIETRIBUTIN STATEMENT A |
DTIC QUALITY INSPECTL) «

Approved tot rotlic ceumecs)
Distrineticss Unlaratsed)

- —

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GE/ENG/96D-08

Performance Analysis of Dynamic Routing Protocols in a Low
Earth Orbit Satellite Data Network

THESIS
Richard F. Janoso
Captain, USAF

AFIT/GE/ENG/96D-08

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U. S. Government.

AFIT/GE/ENG/96D-08

Performance Analysis of Dynamic Routing Protocols in a Low Earth

Orbit Satellite Data Network

THESIS

Presented to the faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Richard F. Janoso, B.S.E.E.

Captain, USAF

December, 1996

Approved for public release; distribution unlimited

Acknowledgments

There are many people who have been of invaluable help in completing this thesis.
Specifically, I'd like to thank my thesis advisor, Captain Richard A. Raines, for patient
guidance, and my thesis committee Lt. Col. David L. Coulliette and Lt. Col. David M.
Gallagher, for their specialized support. I'd also like to thank my classmates, especially
Captain Douglas K. Stenger for providing vatious parts of the simulation system, and the
members of the WC2 group (Capts Brian Ernisse, Rod Radcliffe, and Eric Zeek) for

downtime recovery.

Richard F. Janoso

Table of Contents

ACKNOWIBAGIMENLS.ccueiiivrnenriirerieniesirieereesienesentsesnessensessesseresssassssresssssesssarsasssassesasseseses i
Table Of COMEENLS ...c.cocceereiiirieeeirieiiiiieaetniteiecesste e seenssesasessnsts st sseaessssssssaanssssssenanseses ii
LSt Of FIGUIES ...vcvinieiecintierininintctiitccsinesssacssesnssessssessssesesssssssesesnesesesessnsssessossssonsnes v
ADSITACEecveetreeereiinentstesetsseesereesstseestssestssisssssessestessssssssessessassanssstsatsassseseosesaassssssesssnes vii
1. INTRODUCTIONcccovtmrrinriniinintinnnnnssssisaesssssssnnsssssesssssssesesassssssssnsassssserssssasassassasses 1
1.1 BacKEIoUNd......ccoveecriiirircnsiiinnnniccniec et seesessesassstsesnnasssesstesaesessesensnnstesassesnes 1
1.2 The Problem.....ceiviiiiiciiciniiiiicisienciisssssecitsssssnessssesessssssesssscssessssens 1
L3 SCOPC ..o vittenenecrittreesettreecstssesaentstses s sssssestesssenesnassbssessessatstssnsaensensarssseseacenses 2
RN o o) (0 T + OO OO RSP TOTPRRTO 2
2. PRIOR WORKcoceivitrrreterirnenaneesinerseessesneesessanessssenssssaesesesssassestsessassosssssssssnsacsesssses 3
2.1 Level 1 - PhySical.......couiiinniiicrncitenccinsctetneseiessessssesesansssessesssencss 3
2.2 Level 2 - LinK CONLIOLciitreeiriierieacsisnieitesnceessrsressesssseessesssessensesssssonencess 5
2.3 Level 3 - ROULINGcovveeeierieenienrereereesereseseesessesessesassesesssssessassessessessassessesassencs 6
2.4 Level 4 - TrANSPOTLcouccerirteineirectiiesienseineetesesteseseresesesessestesesesssensassssssassaens 12
2.5 Current SyStem Proposals..........cccecceeuerieeeeeneninecennecininineesisesensesessensesessessssns 13
2.6 Performance StUAIESc...ecceeverreerceintenentinenretieeesesessseseneseseseesesssessnenessssencncs 14
2.7 SUIMINATY o.ocvivirniinrierirseestiseseiistssesisscesssesssssessssessssssssssssesssssssssenssssnsssesssssssasens 14
3. METHODOLOGYocoiinitieniiirmrecnnriererecessesesressssesetsssssssessessesesassescssssssessosesessesesseses 15

3.] I OMUCHION. .. veeveirieseirereeeeressisesnsseressesessasessesesessssssesssssasassnssossssssesassssessssssnsensess 15

3.2 EXPeriment DESIZNeceevrienerenciienenrernreneentereacsenessssesssesessssassassssssresssessssssesens 15
3.3 Data Gathering.....ccvuiieveireniiernrenii st esaes st sesssasssrossses 21
3.4 Operational ASSUMPLONScoeireierisisiiniisnsrisiesene s sesssssssassesissssnsasessesssese 22
3.5 Verification / Validation..........coceveererscetnennscnririnccessensescesesnessnsessasssssesssssssnrssses 24
4. RESULTS AND ANALYSIS ...ottcctnteetectnteceeiestsssseesssessesessestsscstossasssssessons 26
4.1 ACCUTACY .ecreriruerreninsnctesitesitisessssesessestssesssssssssssatsaesssessesssostosssssseseasenssesssssssncs 26
4.2 Simulation MEChanICScocvvvveviininniiitieiicicinincinrce et ecssssseste e senesssnes 27
4.3 Individual Protocol Data..........cccvueeeeiciuinenieriiiiieennenccnnreneesessnessessessssessssssesasses 28
4.4 Comparative Performance Results.........ovevevevvrnninieriniininmenniiirscscnianns 40
4.5 SUIMINATY «..vcueevrecererrrenroesiessenseetssesessassestensossasssessssesaentssesssassassssssssassessesssesersases 44
5. CONCLUSIONSootriiricriiriteeneeisstsneensstssssnetosssesisssssassstsssesssesssnsasaretsssssssssnsessssses 46
5.1 Protocol Applicability to the Orbital Environment...........coceeveeeresicecrcrvrnesncerecnnes 46
5.2 Simulation Problems Encountered..........cc.ccovevurnierecenencnieniencneceeneneenesecsesenee 46
5.3 Recommendations for FUture Work.......cccceceveeeenvcrennseneennnncsessescnsnneneescnenes 47
5.4 CONCIUSIONcmiviirnireeirieectectntetectetntetstset et st sassae e st ssussasaessesessonenssassessene 47
APPENDIX A.....oootiireeisiiereeresisisisessestssssesssescstesesenesssusssosssesssentessesessassessncsenssasesassssases 49
AL1 Designer BDE ...t seteccnnessessssesassesssssesessesessssssaesssesssens 49
A2 Packet FOIMALcocoviiimieiiirerecietrtce et seceestss et seescssessae s sesasaes 65
APPENDIX Boovveororvenresseesssessessisession T SO, 66
Bl DITNG. . veoeoveeoemesssees s veessessssesessessssssesmesssssssssssssessssmssessssssssemmesesesssesesssssseres 66
B.2 Extended Bellman FOrdoccevenininininnnnncicncenenccnessescreeesessensaes 83

B3 XICS ottt et s 97

B.4 Add Element to VECIOTccoiviierminirineiiinninicrisissiiscsissnessnssessssssesssesssssenss 99
APPENDIX C.....ovevirirenrniresiririnciressssiessssssessseccscasasas ettt aet bt r e aans 101
BibDLIOZIaPRYcoviiiiniitniniiintrcstcte bbb s e 104
VLA ceeveveerernenesesineeeessenesesas st ssassesesses st s ssas s sassnsnssesbssbesosessasassssssonsasssusssssnsssassassnsonen 107

iv

List of Fignres

Number L Page
Figure 1: Top level Extended Bellman-Ford sChematic......mmccvvinreccinsissssssessssninns 17
Figure 2: Top level Darting sChematiC......iiiseisecs i cissinsesecsssssssssessssnsssnss 18
Figure 3: Globalstar Constellation. ...t ssssssnssscsssssscsssssssssssssssssnss 20
Figure 4: Iridium ConSstellationcoe.ueeisvicsvinesisnssssnssnssssisssssssssssssssss s ssssssssssssssssssssssesses 20
Figure 5: Bellman-Ford Mean Delay in GIODAIStArvvceereiecire i esiscssansensssnnn: 28
Figure 6: Bellman-Ford Maximum Delay in GlobalStar.........ieninciciicicicrciscinnes 29
Figure 7: Bellman-Ford Convergence Time in GIObalStar......cvvemvvvirvvrveremmissnscssssssscsecsene 30
Figure 8: Bellman-Ford Overhead in GlobalStarininccicsiciscessnseenecnnssnes 31
Figure 9: Bellman-Ford Mean Delay in IHdum.........cvevimerenrneseniencennsisessessscssiesissssssesossas 32
Figure 10: Bellman-Ford Max Delay in Ifdium. ... inenccinreeeriieseesssssniscasessss 33
Figure 11: Bellman-Ford Convergence in IAdIUM c...civciriieeciimncincmnccsisesisesensississnenens 33
Figure 12: Bellman-Ford Overhead in IAdium ... 34
Figure 13: Darting Mean Delay inn GlODAIStar ...t 35
Figure 14: Darting Maximum Delay in Globalstar.......cinicsinnieccinansissisennes 35
Figure 15: Darting Convergence Time in GIObalStar.........cociemccnniinnicnicicsiisnsens 36
Figure 16: Darting Overhead in GIODalStar ... 37
Figure 17: Darting Mean Delay in IHdium........ccrrcnrcineiscessssesessnns 38
Figute 18: Datting Maximum Delay int THAIUM c.ocerrerssersrssrssrssssssn38
Figure 19: Darting Convergence Time in IAdium ... 39
Figure 20: Darting Overhead in Ifdiumu.... it isseesissssenssssssssnasssnnes 39
Figure 21: Comparison - Globalstar Delayccvicnncnciiinnincisennccosnssissssisnnns 40
Figure 22: Comparison - Ifidium Delay........coiiiniiiciniicencic i 41
Figure 24: Comparison - Globalstar CONVELZENCe.....coummmmsrsriansissisessesssisssissesssssesssaes 42
Figure 23: Comparison - Iridium CONVELZENCEurerrirrissisnisissisensassssssasssanssssanesssessans 42
Figure 25: Comparison - Globalstar Overhead.........occinsicsniscinnissiseciesessonsaess 43
Figure 26: Comparison - Iridium OVerheadoeccnnncinecnecessenncsssiscesenessiecassinees 44

Figure 27: Simulation Top Level SChematic ... et scciincsnsssiseeesesinns 49

Figure 28: SatLab Memoty INitializationccceernriinsisssisnssssssssinsenmsssssscessecssasecsnss 52
Figure 29: Update Satellite Positions BIOCK ...t sssssssecnsonss 53
Figure 30: Update trigger “Ping” throttle.. . miicecisecisssisesssssssssressssnsssssessenes 53
Figure 31: Read INtErval COUNLELSuumrmrrirmnriieenicssssnsicssessts st sssssssssssssssassssssssstassnsns 54
Figure 32: Bursty Groundstation Transmitter BIOCK ...uuvueveeieecervvecitsiisiceenscssecssacsiannes 54
Figure 33: Transmitter INStANCES....umiiremrirssnrisissrinssisssssss s ssisssssssssstessssssstssssasssssssssssssssesssssnsssss 55
Figure 34: Bursty Barth TTanSmitters......ccommriiirsrsssissssissssinssssssisisssssssssssasssssssssssssssssassssess 56
Figure 35: Uplink Delay (Earth-Sat) BlOcK ...t tsitsnniensrssstass s 57
Figure 36: Bellman-Ford PacketType KIudge ...vuuueurerceivinririincrisere e sesecssssssssasssnnes 58
Figure 37: Darting ROUtervuveretreriteereeensssnnsienienaes et aaes 58
Figure 38: Encapsulate PacKet. ...ttt s sssasassaes 59
Figure 39: Extended Bellman-FOrd fOUtEr ...t ssssssssessssssssessssnss 60
Figure 40: Update Packet HIStOLcovcuviirirrminnerneersitsessesiessssnss s asssssssssssssmsssssssessasens 61
Figure 41: ENROULE Nl SPACEurvvernrtiiesiensstnsinssssests sttt ssesssssssessss s sssses s sstsssessssssessessans 61
Figure 42: Destination Reached BlOck ... 62
Figure 43: Satellite to Satellite Delay BIOCK......ouucecienicr e 62
Figure 44: Sat - Earth Delay BlOCK ...ttt ssssssesesssasssansss 63
Figure 45: Data Packet ANalysis......o.ciminrennriccecisne s ssesssssssssasesssens 63
Figure 46: Update Packet Analysis BlOCK........cccovvueuirinmesnitinsinnsnses s sssesnnens 64
Figure 47: Degenerate TOPOIOZY 1 ...ttt sssesessessssssesssensans 101
Figure 48: Degenerate TOPOIOZY 2....u..ovuriucrneimrieciretiste s sssasseses s esssesss s sssnsassiassans 101

vi

Abstract

Modern watfare is placing an increasing reliance on global communications. Cutrently
under development are several Low Earth Orbit (LEO) satellite systems that propose to
deliver voice and data traffic to subscribers anywhere on the globe. However, very little is
known about the performance of conventional routing protocols under orbital conditions

where the topology changes on a scale of minutes rather than days.

This thesis compares two routing protocols in a LEO environment. One (Extended
Bellman-Ford) is a conventional tetrestrial routing protocol, while the other (Darting) is a
new protocol which has been proposed as suitable for use in LEO networks. These
protocols are compared via computer simulation in two of the proposed LEO systems
(Globalstar and Iridium), under various traffic intensities. Comparative measures of packet

delay, convergence speed, and protocol overhead are made

It was found both protocols were roughly equivalent in end-to-end delay characteristics,
though the Darting protocol had a much higher overhead load and demonstrated higher
instability at network update petiods. For example, while steady-state end-to-end delays
were within a few milliseconds, in one case Darting showed an increase of 764% in
convergence time over Extended Bellman-Ford with an increase of 149% in overhead.
Over all cases, Darting required an average of 72.1% more overhead than Extended
Bellman-Ford to petform the same work. Darting was handicapped by its strong cotrelation
between data traffic and protocol overhead. Modifications to teduce this overhead would

result in much closer performance.

“vid

AFIT/GE/ENG/96D-17

1. INTRODUCTION

1.1 Background

Since the dawn of history, humanity has been driven to improve his communications;
striving always to exchange information faster and farther. As this century draws to a close,
we are poised to take a significant step along this path with the advent of truly global

personal communications.

The lure of ubiquitous global communications has lead to ‘several large-scale
commercial efforts in the US and abroad to loft multi-satellite networks in Low Earth Orbit
(LEO) to provide mobile communications from any point on the earth. To reduce
propagation delay, these systems attempt to minimize the number of links between the
ground and space based portions of the network. Towards this end, several of the projects
intend to use inter-satellite links to route the circuits completely in the orbital environment.
The large velocity of the satellites with respect to the ground and one another, however,
gives rise to high demands upon the circuit setup routine as it attempts to find the best path

through a rapidly changing network topology.

1.2 The Problem

While the majority of the curtrent proposals deal with voice traffic in a circuit switched
metaphor, at least éne project will target data traffic. The addition of packet switching
capability compounds the difficulty of the space-based routing algorithm, as it attempts to
dynamically optimize paths through the LEO network links. Little is known about the
ability of current routing protocols, designed for a relatively static terrestrial network
topology, to adapt to the constantly changing configuration of the space based links. Most
especially, the ability of the routers to converge upon a satisfactory network state within this

environment is critical.

This thesis attempts to shed light on the tradeoffs encountered for the problem of
routing protocol selection. Because of the highly dynamic nature of these LEO
constellations, selection of the routing algorithm can greatly affect the efficiency of the
system. By studying the performance of two representative protocols under vatious

operating conditions, we can begin to understand the advantages and drawbacks of each.

1.3 Scope

This study determines the speed of convergence, average packet traversal delay, and
protocol overhead of two representative routing protocols (Extended Bellman-Ford and
Darting). This is done on two different satellite configurations (toughly based on the current
plans for the Iridium and Globalstar systems). The thesis makes no attempt to model or

account for link quality, or other atmospheric and electromagnetic degradation effects.

1.4 Approach

Currently existing LEO netwotk simulation models for the two satellite topologies
mentioned above were modified to allow insertion of differing routing protocols.
Additionally, the models, which approximated network convergence by using only one
routing device, were extended to allow autonomous routing processes to exist on each
satellite node. Each of the protocols was tested on the satellite netwotks at vatious traffic
intensities using the BoNES Designer and SatLab simulation tools. Several runs were

accomplished to increase the confidence in the results.

2. PRIOR WORK

Most of the commetcial satellite communication (SATCOM) networks are only a few
years away from operation, so it is no sutptise that a good deal of research has been done on
the structure and operation of Low Earth Orbit (LEO) SATCOM networks. This section
provides a btief summary of the major challenges, and the various proposals for solutions
that have been made. For otganization, the chapter divides the topics up into sections

corresponding to the OSI reference model.

2.1 Level 1 - Physical

For a global communications system to be a reality, the constellation must be visible
from every point on the earth from which a customer might desire to make a connection.
Presently, most companies place communication satellites in geosynchronous orbit.
Unfortunately, at geosynchronous altitudes, propagation time of radio signals becomes a
significant source of delay, and signal power requirements become latge. 'This makes
systems of “GEO” satellites somewhat less than desirable in global personal

communications networks.

To combat the problems associated with geosynchronous altitudes, a satellite can be put
into orbit much closer to the surface. While this solves the problems of signal power and
delay, the satellite loses synchronization with a specific location, and can only see a much
smaller area of the earth. To completely cover the surface, then, many more LEO satellites
are necessary. Howevet, because LEO satellites orbit below the Earth’s Van-Allen radiation

belts, they have the offsetting advantage of much cheaper construction.

Several studies have been done to determine constellations of LEO satellites that can
ensute global coverage using an atbitrary number of satellites. Walker [Wal77] was among

the fitst to propose such a system, and several commercial ventures have adopted the

Walker “delta” network. Walker constellations consist of several planes of inclined orbits
with multiple satellites per plane. The system is described by six parametets that are chosen
by the system designer to produce the desired degree of network coverage. For example,
Globalstar (one of the leading LEO contenders) proposes to construct theit constellation in

a48/8/1/52°/1389 format. ‘This means that there will be 48 satellites in 8 different orbital

planes, with a 7.5° phase shift between the planes. The orbital planes themselves will have

an inclination of 52 degrees and the satellites will orbit at 1389 kilometers. For Globalstar,
these numbers ensure that at latitudes below 55°, there is at least one satellite visible at an

elevation of 40 degrees or greater [Rou93).

Another popular family of constellations is based upon the work of Adams and Rider
[AdR87] who proposed the use of polar orbits to provide n-redundant global coverage. This
is the otbital family used by Iridium, another leading network proposal. The constellation is
based upon the idea of a “street of coverage” provided by each otbital plane. The designer
can make any desired number of satellites visible from an arbitrary spot on the eatth by
simply “narrowing” the street (bringing the orbits closer together). Current plans for
Tridium call for six 86.4° inclination orbits of 11 satellites each at an altitude of 780km

[WuM94]. Minimum viewing elevation provided by this configuration would be about 10
degrees [Leo91].

One system (Teledesic by Teledesic Corp.) even proposes to use a sun-synchronous
orbital configuration. Sun synchronous orbits are retrograde orbits. This means that their
angle of inclination is greater than 90 degrees, so they seem to orbit backwards as viewed
from the surface. If the inclination and other orbital parameters are chosen cotrectly, the
satellite will maintain a constant position relative to the sun. This leads to benefits in
constant time-of-day traffic scheduling [WuM94]. In other ways, this constellation type is
very similar to the Adams and Rider family. Teledesic plans to use 21 orbital planes with a
98.2° inclination spaced about 9.5 degrees apart at an altitude of 700km. Each plane will

hold 40 satellites, providing access to two satellites at almost all times, one of which will

always be available at 2 minimum 40° elevation [Tuc93].

2.2 Level 2 - Link Control

Once the satellites are in place, and the necessary frequencies obtained, the problem
becomes how to otganize information exchange over the communication links. Most of
these issues have been tackled for terrestrial netwotrks, but the unique characteristics of the
orbital environment make some techniques more useful than others, and in some cases

require completely new approaches.

Binder, et. al., propose a synchronous slotted approach in [BiH87], where the authors
study the performance of inter-satellite crosslinks in a 240 vehicle constellation. First, they
note that because the propagation times in otbit ate generally much longer than packet
‘transmission times, catrier sensing protocols are not useful. Instead, the authors develop a
new approach that they call Pseudo-Random Scheduling (PRS). This method is applied on a
‘pairwise basis for each crosslink, allowing freedom from the requirements of coordinating

global synchronization.

PRS dynamically forms crosslinks as each satellite comes into range. In the method
described, a satellite is assumed to be able to predict its own otbital position, but have no
knowledge of the position of other satellites. Each satellite is also assumed to have an omni-
directional listen and transmit capability. The omnidirectional mode is used to send special
“hello” packets during idle times that contain the sender’s ID, current position and motion,
local clock time, and its random number seed. If a satellite listening in omni mode receives a
hello packet, and decides based on the information received that it wants to establish a link,
it responds to the hello packet with a similar reply. This packet is transmitted on a
directional beam formed with the information in the original hello. The ofiginator, on
reception of the reply packet, then completes the handshaking by replying with a directional

beam of its own.

Turning to the characteristics of the up and down links, transmitters in the proposed
LEO SATCOM networks may occupy several different cells during any single call. Unlike
terrestrial cellular networks, here it is the cells that are moving with respect to the (telatively)
stationary transmitters. It is of interest then to determine how frequently the average user
can expect to encounter handoffs and the effect these handoffs will have on the quality of

the call and performance of the network.

The authors in [GaG94] derive an expression for the average number of handoffs
experienced by a particular user based upon the speed of the LEO constellation and the

radius of the satellite footprints. The detived relationship is:

(3+2V3)v,

i

h= @.1)

OX R

R

where 17;is the LEO speed with respect to the surface (V, =

R, is the LEO orbit radius, and R, is the Geosynchronous orbit radius. From this it can

be seen that the expected number of handoffs is a linear function of the footprint radius ()

and velocity of the constellation (1), times the average duration of a call (1/ W).

2.3 Level 3 - Ronting

If the satellites in our network were petfectly stationary, the questions of routing could
be easily answered by any number of cutrently existing protocols. However, systems give up
this ability when they chose to use LEO satellites to capitalize on their lower propagation
and power characteristics. Thus, the question becomes, how do we propetly route data
packets in a network where there is no fixed relation between routing nodes and end-user
devices? Each of the commercial efforts currently underway has plans for some type of
proprietary routing protocol to address these issues, but published literature on these

techniques is surprisingly sparse. A few teams have addressed specific issues though, and

some relevant information from the Strategic Defense Initiative (SDI) program has also

been released.

The problem of determining the shortest path through the network given multiple
constraints is not trivial. Jaffe [Jaf84] has proposed an algotithm that solves shortest-path
multiple constraints in O(#%b log nb) time [O(#*) log nb) time per node in a distributed
implementation] and O(#6) space per node pair. Here # is the number of nodes and & is the
largest value of the other constraints. He also presents three approximations to the solution
that run in polynomial time and produce paths no worse than 2, 1.62, or 1.5 times the

optimal solution.

Jafte’s method works by simultaneously calculating all the possible shortest distance
paths between each node pair. Once the initial tables are calculated, subsequent routing
decisions are simple table-lookups, thus amortizing the high initial runtime. A possible
refinement whereby table entries that provide little value are dropped in order to economize
memory tequirements is also discussed. Additionally, Kung and Shacham present a
somewhat simpler algorithm in [KKuS84] that is useful in a centralized or semi-centralized
environment and runs in O(#?#T,...T,) time. (Tx is the value of the corresponding

constraint.)

Several authors [BaA93], [ArA94] have looked at using the neural network “mean field
annealing” technique to solve the routing problem for circuit switched netwotks. Circuit
switched networks are typically constructed to allow alternative routes to be chosen for a

transaction if the direct path is unavailable for some reason.! While this results in improved

1 Almost every circuit switched routing proposal is based upon a modification to AT&T’s Dynamic Non-Hierarchical
Routing protocol used in their long-haul network. DNHR is applied to the top-level mesh-connected circuit switched
network in such a way as to assure that at most two links are used to complete every call. When 2 call is placed, a specific
prioritized set of paths is chosen based upon the date and time of day. Then, when determining the circuit setup, the
direct path is checked for an available link first. If one does not exist, the various “alt-routes” are investigated to attempt
to place the call. If these are also busy, the call is blocked. Alt-routes are chosen to involve only one other intermediary
node, and the routing choice sets ate optimized off-line and downloaded to the routers periodically based upon network
usage patterns. [Ash90]

performance at moderate loads, it degrades quickly at higher traffic levels. The proposed
solution involves teserving a fixed amount of bandwidth on each link for direct-routed calls
only. The problem then becomes choosing this resetvation value on a dynamic basis to best

optimize the network.

As a solution, the technique of mean field annealing is applied to the network to
generate routing maps that globally minimize the total call-block rate of the network, and
maximize total throughput. A controller module monitors the network performance and
determines when a new map needs to be calculated. Neural networks are composed of
networks of simple linear operators that take an input, and based upon an “energy”
function, provide an output. Through the use of feedback, the netwotrk converges to a
solution. Energy functions are composed of a cost term, (which in this case is the total
block rate of the network), and a constraint term that penalizes the cost if applicable
constraints are violated. For example, constraints for the circuit switched case could specify
that each node can only be assigned one reservation parameter, and that the total numbet of

“on” neurons be equal to the number of network links.

Once the neural net is constructed, annealing works by repeatedly computing the
network costs after perturbing the input slightly and keeping an updated entry for the
current minimum values. In this manner, an entire netwotk map indicating the shortest
paths between each node pair may be constructed. To prevent the solution from being
caught in a local minimum, non-optimal changes are allowed with a finite probability during
each iteration. This effectively allows the simulation to “back-out” of a local minimum.

Details can be found in [ArA94].

With the algorithms mentioned above, and others similar to them, it is possible to
determine the optimal routing path for a given data packet. Howevet, conventional
flooding-type routing algorithms are not well suited to the orbital environment due to the
latge number of overhead messages they generate. This, coupled with long link propagation

times, may result in transient loops forming in the network while a topology update is in

progress. ‘The authors in [GrZ89] have investigated the performance of conventional

Ford/Fulketson and Metlin/Segall routing algotithms in SATCOM networks.

Ford/Fulkerson operates by having each node maintain a table of costs for all
destinations reachable through its outgoing links. Upon detecting a change in one of these
links, a node will send a control message to each of its neighbors. These neighbors will in
turn update their own internal tables with the new information and pass the update farther
along the network. The advantages of this method are its simplicity and asynchronicity.

Disadvantages are slow convergence time and susceptibility to looping.

In contrast, the Matlin/Segall method is designed to prevent formation of these
transient loops during a network update, but it does so at the expense of a slower
convergence rate. In Merlin/Segall, all paths ate stored as directed trees rooted at the sink
node, which prevents loop formation due to the acyclic natute of trees. Updates begin at the
sink node and propagate up-tree until the farthest node hears from all its neighbors. This
farthest-distance estimate is then returned down-tree, with each node updating it’s shortest-
path entry upon reception of the return packet. Multiple update cycles may be required in

the presence of network node failures.

The authors compared each algotithm on a hybrid LEO/GEO network of 18 and 6
nodes respectively. ‘They found that the extra loop-preventing overhead introduced in
Metlin/Segall led to petformance an order of magnitude slower than the Ford/Fulkerson
method.

The authors of [CaA87] present another type of loop-free algotithm that they designed
specifically for the orbital environment. Created for SDI, its goals were distributed
execution, robust recovery from massive failures, rapid adaptaton to frequent load
fluctuations and connectivity changes, and low delay with optimal throughput. The
underlying topology for the network is assumed to be hierarchical, with a backbone of no

more than 100 nodes serving clusters of second-level devices. The algotithm operates on

the backbone nodes and runs in O(#?) time with O(#) messages per link. The algorithm uses
a constrained flooding algorithm to broadcast “local” status periodically, with complete
topology information being disseminated at longer intervals. This netwotk information also
includes congestion statistics. Load sharing among multiple paths to the destination is
performed using a heuristic. Routing updates are synchronous (which is used to guarantee
- absence of transient loops), and occur approximately every 5 seconds. In the event of
satellite failure, special “NO_PATH” messages are used to speed re-convergence of local

tables in response to the failure.

A drawback of the preceding methods is the relatively high overhead associated with the
control traffic. Tsai and Ma [TsM95] present a novel approach that they term “Darting” to
overcome the high message overhead involved with flooding-type algorithms. The key idea
behind Darting is to postpone transmission of topology update messages until it becomes
necessaty to actually transmit a data message. Darting uses two update mechanisms, which
are triggered with the presence of a data packet. One mechanism updates the downstream
nodes (i.c. “successor” nodes that the data packet will be visiting shortly in the future) and
the other mechanism updates the upstream nodes (“predecessor” nodes.) The predecessor
mechanism is triggered when the local node detects a discrepancy in topology views between
itself and its immediate predecessor. When invoked, the mechanism send a special update
packet backwards along the data path to pass updated network information to the sender.
Successor updates are carried out by embedding all recent local topology changes in the
outgoing message, which serves to propagate network changes downstream along the data
path. By embedding local topology changes in each passing data packet, Darting eventually

disseminates topology changes throughout the network.

Unlike conventional flooding algorithms, which exchange periodic control messages to
prevent the formation of “message traps” (i.e. routing loops), Darting concentrates on
dynamically breaking any traps that have formed. This eliminates the need to exchange
update messages on a regular basis. When a source node desires to transmit a packet to a

neighbor, it consults its routing tables, and places the anticipated cost of delivering the

10

message to the destination in a header field. It then calculates the anticipated cost for its
neighbot to transmit the message to the destination, and places that in another header field.
Upon receiving the packet, the neighbot node can use this data to determine if the sender is
using current routing information. If a discrepancy is detected, the predecessor update
mechanism is invoked. Notmally this mechanism only updates the immediate predecessor.
Optionally, though, predecessor update messages can be allowed to propagate farther back
upstteam befote being discarded. This will result in faster netwotk convergence at the

expense of additional control traffic overhead.

Shacham [Sha88] conducts a detailed look at the obstacles and hurdles that the network
and transpott level protocols will encounter in orbit. He proposes using the predictabﬂity of
short-term changes in the local environment to reduce the amount of topology-update
traffic generated by the network. This is based upon the assumption that any single satellite
will have information about the positions and velocities of its neighbors and be able to
detect when two of them will come into communications range. It can then notify the
network of the expected changes in the local envitonment for a short time into the future,

and can do this at a much lower frequency than a simply reactive approach.

Shacham also looks at the problem of address binding. Because the satellites above any
particular user ate constantly changing, there is no fixed relationship between a specific user
and netwotk node. Thus, addresses based on geographical location of the end terminal are
suggested, with the possibility of multi-homing, so that a packet can be routed to “any
satellite above Washington DC”, for example. Information on the locations of specific
destinations would be stored in a disttibuted database indexed by destination ID. It is also
suggested that satellites dynamically reduce topology complexity by only forming network

links with a subset of available neighbors.

Finally, because of the combination of high link data rate with high propagation delay,
the author recommends avoidance of the go-back-n type transport protocols in favor of

selective tepeat protocols such as VMTP. This avoids the unnecessary retransmission of

11

packets that may have been received correctly, which can be large due to the large window

size required to handle the rate/delay combination, as discussed below.

24 Level4 - Transport

While each of the link control methods of section two has some provision for etror
detection and retransmission, normal methods of automatic repeat requesting (ARQ) are
not well suited to otbital links. This is ptimarily due the simultaneous occurrence of high
data rates and high propagation times found in this environment. For conventional go-
back-n ARQ protocols, the latge window sizes required for this rate/propagation ratio lead
to many needless packet tetransmissions. Because of this problem, reliable transpott

provided by Level 4 protocols becomes increasingly important.

VMTP is a transport level protocol that has been suggested as a possible candidate for
end-to-end teliable delivery ovet LEO SATCOM systems [Sha88]. It provides higher level
processes with the facilities to conduct “conversations” between end nodes using special
constructs termed “message transactions”. Each high level conversation is built out of
VMTP message transaction primitives. A message transaction is a request-response pait
with reliable delivety on both the request and response messages. By replacing the
conventional virtual circuit paradigm with these message transactions, VMTP is able to cut
down the number of packets exchanged for simple operations like file query, get time, and
basic remote procedure calls to a single request-response pair. 'This is in contrast to a virtual
circuit based protocol like TCP that normally requires six or more packets for the same
operations. VMTP also has provisions for packet duplication suppression even when the

delay between the original and duplicate is relatively long.

Additionally, VMTP includes a method of dynamic transmission rate “throttling” via its
selective repeat retransmission scheme. Each VMTP message is divided into a packet group
with a bitmask field for the group placed in each packet header. Each bit in the bitmask
cotresponds to a packet in the group. Therefore if the receiver gets any portion of the

packet group, it can easily indicate to the transmitter which packets to resend by simply

12

returning the mask with the corresponding bits set. In the case where the transmission rate
is too high for the network, upon analyzing the returned bitmask, the sender may discover
that every k™ packet is being lost. It can then increase the amount of time between each
packet in the group to accommodate current network conditions and reduce subsequent re-
transmissions due to buffer overruns [Che86]. It is highly preferable for the transmitter to
pace itself rather than waste network bandwidth and satellite power in needless

retransmissions.

2.5 Current System Proposals

Three proposed LEO systems seem to be emerging as the top contenders to actually
field a workable communications system. ‘These ate Iridium by Motorola, Globalstar by
Loral/QUALCOMM, and Teledesic by Teledesic Cotp. (Formetly known as the Calling
network.) Each has chosen slightly different implementations (the structure of each

constellation was detailed in section 2.1.)

Globalstar and Iridium plan to focus primarily on voice and facsimile traffic in the 4800
baud range, while Teledesic intends to provide multiple 16kbps data channels. The former
are therefore primarily circuit switched systems while the latter is more similar to
conventional computer networks. Indeed, as mentioned before, Globalstar does not even
intend on employing satellite cross-links, instead routing all traffic to regional ground-
stations and then relying on conventional land-lines to complete the circuit. This, in turn,
has probably motivated Globalstat’s higher altitude (1400km vs. 700km), which results in a

larger satellite footprint, reducing the number of ground-stations required [Wis95].

The crosslink structures of Iridium and Teledesic, and the pattern of cells they lay down
on the surface, reflect the differences in emphasis in the two systems. The four crosslinks in
Itidium are partitioned into 1300 fixed channels, while Teledesic uses 8 crosslinks of
138Mbps each. While both constellations orbit at approximately the same altitude, the
much higher data rates envisioned by Teledesic require it to have an order of magnitude

more satellites than Iridium. Correspondingly, each satellite footprint in Teledesic is much

13

smaller: 1400km vs. 4700km. Additionally, Teledesic will employ a much higher elevation
angle, 40 degrees vs. 10, to improve signal performance {Leo91], [Tuc93].

2.6 Performance Studies

None of the systems mentioned above will be operational until at least 1998. Until then,
the only method we have for examining performance of these types of systems is computer
simulation. The authors of [TsC94] studied the petformance of a hybtid LEO/GEO
netwotk for circuit switched traffic. The LEO network was similar in dimension and
construction to Iridium, with the addition of three Geosynchronous satellites that were used
as alt-routes for overflow traffic. Each LEO satellite had 6 cross links to neighboring LEO
satellites, plus one link to the nearest GEO satellite. Routing was performed with traditional
DNHR style algorithms, with calls alt-routed through the GEO satellites if the proposed
LEO route exceeds a threshold hop-count, or if a LEO link in the path is saturated.
Residual capacity resetvations were used on the crosslinks to improve stability. Results
indicated a blocking probability of less than .6 at a load of 1000 Erlangs. A measurable
improvement was found to exist from inclusion of GEO satellites to the network. The
improvement is highly dependent on the value chosen for the hopcount threshold though,
and would need to be dynamically tuned to assure optimal network performance. For the

Iridium-type system simulated, the ideal threshold was approximately 4 hops.

2.7 Summary

Cutrrent efforts at fielding global personal communication networks seem well underway,
with no significant technical obstacles remaining. However, while information regarding the
link access methods of each system has been relatively well documented, not much has been
officially published regarding the routing methods these systems intend to employ. The
problems of routing in an orbital environment are demonstrably more complex than an
earth-based system. While several authors have proposed tools to handle various pats of the
issue, very little comparison of the relative merits of each solution has been accomplished.
Until the commercial systems are fielded, we must fall back on simulated results for the

initial answers.

14

3. METHODOLOGY

3.1 Introduction

As discussed in the previous chapter, vety little information is available on the relative
merits of the various approaches to the orbital routing problem. To attempt to alleviate this
ptoblem, this thesis provides a comparison of the performance of two different routing
protocols under vatrious otbital and operational characteristics. This was done using

commercially available simulation tools as described in the remainder of this chapter.

3.2 Experiment Design

3.2.1 Choice of Method. There are three primary methods of obtaining measures of
network petformance. You can build the system in question and measure it in operation.
You can construct an analytic model and study the mathematical representation of the

system. Or you can build a simulation model and run experiments.

Simulation has been chosen for the following reasons: 1.) Though analytic modeling
provides a more accurate description of a network (if you can find a solution), the size of the
netwotks in this thesis makes analytic solution intractable. Kleinrock observes "When one
relaxes the Markovian assumption on artivals and/or service times, then extreme complexity
in the interdeparture process atises ..." Even if we were to make the simplifying assumption
of Poisson atrivals and exponential service times, analytic solution for equilibrium of a
N+K-1

N-1

closed network of queues involves solving (Jsimultaneous equations?. Even for

the smallest proposed constellation (Globalstar with 48 nodes), solving the system for only
5 packets in the network fequires solution of almost 2.6 x 10¢ equations [Kle75]. 2.)
Currently none of the proposed satellite systems are operational, making study of a physical

system impossible.

2N is the number of nodes and K is the number of packets in the network.

15

3.2.2 Choice of Protocols. Original plans called for a comparative performance analysis of
multiple orbital protocols. However, at the present time, there is surprisingly little
published about routing protocols to be used in these LEO systems. Datting was the only
published protocol assetted to be suitable for operation in satellite systems. Each of the
commercial systems discussed in the previous chapter plans on employing some sott of
proprietary protocol, and says little else. Accordingly, it was decided to use a
representative tertestrial protocol to gain a baseline against which Darting could be
compared. The terrestrial protocol selected is an extension to the venerable Bellman-Ford

protocol proposed by Cheng, et. al. [ChR89].

This Extended Bellman-Ford algotithm (exBF for short), fixes the counting-to-infinity
behavior and bouncing effect of the original Bellman-ford protocol. Otiginally used in the
early days of the Internet as the inter-gateway protocol, it was these two problems which led
to Bellman-Ford’s replacement with more modern protocols. A comparison at the
University of Maryland [ShA92] showed that with Cheng’s extensions, Extended Bellman-
Ford performs comparably with the newer systems. Therefore, due to relative simplicity and

universal familiarity of Bellman-Ford, this protocol was selected for the comparison.

Cheng solved the bouncing and counting-to-infinity problems by noting that those
effects were caused by routers advertising what he terms non-“simple” paths. By this, he
means one router telling a neighbor that it has a path to a destination when the path so
advertised goes through that neighbor. By adding an extra field to each entry in the routing
table, Cheng is able to detect these non-simple paths and modify router advertisements
accordingly. It should be noted that only the basic version of Cheng’s extensions are
implemented for this thesis. The synchronization protocol enhancement also proposed by

Cheng which would eliminate short-term looping effects was not implemented.

16

3.2.3 Simnlation Construction. The network simulations in this thesis were built using two
packages, BONES Designer and Satlab, published by Cadence software. Designer is a
top-down block-oriented network simulation package and Satlab is a satellite
constellation simulation and optimization package. SatLab is used to communicate the
telative positioning and visibility information of each network node to Designer, and
comes with the Globalstar and Iridium constellations built in. The example satellite
communication system provided with Designer was modified and extended to fit the

needs of this thesis as described below.

Following the top-down approach, a copy of the top level schematic was made for each
routing protocol and modified as shown in Figure 1 and Figure 2. Text labeled with a “P” is
a simulation parameter set at runtime. Text labeled with an “M” is a memoty variable, and
the text labeled with an “R” is a FIFO queuing structure. The values of the link-rate

parameters are taken from the proposal for the Iridium system [FCC91] and are 12.5

ToplLevel-exBF-Print [17-Sep-1996 12:30:43]

Make Typo 2
Bursty Earth
=z
fpvear 1P Second
TP Month TP Minute
fpDay P Hour

[8] Mumber of Nodes |
[MINumber of Mobiles Y-Updze Packe d
[M]Number of Satellites Y-Ddta Packel
[M)Number of Earthstations

[E Routing table memory

[m Distance table memory

|E Elevation Table Memory

[m] visibility Table Memory

Mobille Latitude Table Memory

B> exBF Route
Sel B

1P Mean number of pulses per burst
P inter-Pulse Time {during burst)
T NodePosttionUpdate Time Detay
TP Mean Detay Between Bursts

TP Sat > Earth Data Rate

Update

Packet

Analysis
a

1P Earth -> Sat Data Rate
[M] Mobile Altitude Table Memory 1P Sat -> Sat Data Rate
[l interval Packet Counter 1P Traffic Start Detay
[M] Contused Packet Gounter Counters P DataBitsPerPacket
[Rejected Packet counter B Maximum Hops
[l Overhead Accumutator Mem TP MaxLinks
E Ground-Sat Translation Vector
[POSITIONING]
a
(5o Bl oen

UPDATE P
| positions P
—&ret

Figure 1: Top level Extended Bellman-Ford schematic

17

megabits per second for the eatth to space links, and 25 megabits per second for the inter-
satellite links. Complete details on the parameter values and memory variable functions can

be found in Appendix A.

Simulation begins with the Init block in the lower left corner. It initializes some memory
variables and obtains the satellite positions from Satlab. Once this is done, the traffic
generators are pinged to begin transmitting. Simultaneously, the ground-station to satellite

cross-reference table is created, and the routing and analysis blocks are initialized.

TopLevel-DARTING [26-Aug-1996 10:12:52)

5 Bursty Earth
1P Year §P Second

1P Month fP Minute
tP Day $P Hour

M Number of Nodes
M Number of Mobiles vt
[M Number of Satelites

[M Number of Earthstations

[M] Routing table memory

[M] Distance table memory

[M] Elevation Table Memory

[M Visibility Table Memory

[M] Mobile Latitude Table Memory

Route
> Select

3 DESTINATION
| REACHED?

$P Mean number of pulses per burst
P Inter-Pulse Time (during burst}
TP NodePositionUpdate Time Delay
$P Mean Delay Between Bursts

P Sat->Earth Data Rate

TP Earth ->Sat Data Rate

Update

Packet

Analysis
a

[M] Mobile Attitude Table Memory 1P Sat->SatData Rate
[®] Interval Packet Counter TP Traffic Start Delay
[Confused Packet Counter Fead&Clear g 1P DataBitsPerPacket
[M Rejected Packet counter Counters 1P Maximum Hops

[M Overhead Accumulator Mem TP MaxLinks

[M Ground-Sat Translation Vector

[POSITIONING]

1T IniiMem |
[8] > e0 2l SFOATE B ver]
P positions P 2 Eing B

<<

Figure 2: Top level Darting schematic

Data packets flow from the transmitters into a routing node, which is contained in a
satellite. The routing block looks at the destination of the data packet and determines the
appropriate next hop, updating the packet fields accordingly. The packet then passes into
the Update History block which maintains a list of every node the packet has traversed. It

then passes to the EnRoute block, which examines the current and next nodes and delays

18

the packet for a calculated amount of time to simulate queuing, transmission, and

propagation delays.

The simulation then checks to see if the packet has reached its destination. If it has, it
then passes to the analysis blocks, which calculate the performance statistics for the routing
protocol. If the packet has not reached its destination, it passes back to the routing routine
to begin another circuit. Complete details of the simulation sub-blocks can also be found in

Appendix A.

Two routing ptotocols, Extended Bellman-Ford and Darting wete chosen for
simulation. Bellman-Ford was chosen due to its use in the early Internet, and because it is
representative of the Distance Vector class of routing algorithms. The version of Bellman-
Ford used here is an extension to the original protocol proposed by Cheng, et. al., and
eliminates the counting-to-infinity problem of the original [ChR89]. Darting was selected as
the second protocol because the authors assert its suitability for the LEO envitonment.
However, during verification of the simulation model, a weakness in the protocol was
encountered when attempting to handle the non-uniform traffic distribution of the network.
Some modifications were therefore made to the protocol to overcome this problem, and are

detailed in Appendix C.

These protocols were simulated on the Iridium and Globalstar constellations because
they are representative of the two main constellation families and were provided with the
SatLab simulation package as shown in Figure 4 and Figure 3. These figures also show the
initial state of the inter-satellite links chosen by the routing protocols. The Iridium
constellation has a periodicity of under 15 minutes. It was therefore decided to run each
simulation for a total of 960 seconds, with the first 60 seconds being discarded to allow
initial transients to die out. Satellite positional updates were arbitratily set at one minute

intervals.

19

ir66-000.ps
e

80= o E R L Y,
= .) T s
Lo

~60=

-70=

-0~

PP A—
-180 ~160 -140 -120 -100 -80 -60 -40 -20

Figure 3: Iridium Constellation

7 i
-0 20 40 60 80 100 120 140 160 180

90— i
gs48-000.ps g2 3
o PO Ry,
AR et s \";W,,, gy e
o I N,
» & ey R

2 "

ISR = - (N5 ST e -

" *N“&§:§%§§§j§} df“”” e e Sy R,
% y g

Rl IR ?,

¥ V T T i ¥ i i [i i
120 140 160 180

[i V i i i i
-180 -160 =140 -120° ~100 -80 -60 -40 -20 -0 20 40 60 80 100

Figure 4: Globalstar Constellation

20

3.3 Data Gathering

The patameters of interest fot this thesis are packet traversal time, protocol convetgence
tate, and protocol ovethead. The simulation calculates these parameters for each satellite
update petiod, and several independent simulation runs are made for each configuration to

improve the confidence level in the results.

Packet traversal time was selected because the main benefit of LEO networks is the
ability to conduct “real time” (less than 400ms) transactions. Thus the impact of each

protocol on traversal time is of great interest.

Convergence tate was studied because it is a dominant factor in determining how
efficiently a protocol moves data through the network. Protocols that determine the optimal
paths faster have a significant edge in providing lower average traversal times in the dynamic

LEO environment.

As was mentioned in Chapter 2, conventional flooding algorithms achieve rapid
convergence rates through a high protocol overhead. Therefore the amount of overhead
load inflicted on the network by each protocol is of interest in determining how much of a

penalty is imposed by each algorithm in obtaining its convergence rates and traversal times.

The simulation measures packet traversal time by accumulating all calculated delays
encountered by a packet in one of the packet’s fields. Each time the packet encounters a
queuing, transmission, processing, or propagation delay, the duration of the delay is added to
the delay field. When the packet reaches its destination, this value is recorded for later

analysis.

Similatly, ovethead is measured by maintaining a packet length field, and accumulating
any additional ovethead (if any) added by each node the packet passes through. When the
packet teaches its destination, the analysis blocks record the number of data bits and the
number of overhead bits contained in each packet. Packets that contain only routing update

information ate counted as completely overhead.

21

Convergence rate is determined by monitoring the network for the presence of routing
update péckets. A sub-section of the update packet analysis block measutes the time elapsed
between delivery of update packets to their destinations. A memory variable local to the
analysis section is used to accumulate these times. The convergence time for each protocol
is then taken to be the total elapsed time from the last satellite position update to the most
recent delivery of an update packet. In other words, each protocol is considered to have

converged when no more update packets are present in the network.?

3.4 Operational Assumptions

Several simplifying assumptions were made to allow a closer focus on the parameters of

interest in the project:

1. Communication links are error-free: Because we are primatily interested in the
routing (OSIlevel 3) performance of the systems, it was decided not to model etror handling
and recovery on the links, as this task is primarily handled at levels 2 and 4. From a level 3
petspective, addition of a finite error probability on each link would only have the effect of
increasing the rate of traffic arrival. Since each of the systems was modeled with various

source traffic intensities, addition of error recovery traffic was deemed unnecessary.

2. Uniform source disttibution: Complete uniformity for source disttibution is assumed.
The commercial systems proposed address two purposes for operation. They propose to
provide global mobile communications, plus ptimaty communication for underdeveloped
areas of the world (fill-in service.) We would expect most of the soutce traffic for the
mobile users to begin or end in one of the larger metropolitan areas, but that the traffic for
the fill-in service would have a more uniform distribution. Because it is uncertain at this
time which function will provide the majority of the traffic, and what petcentage of the

mobile traffic will come from which areas of the globe, a uniform distribution is used here.

* Note that while the absence of update packets from the network in itself does not guarantee that the protocol has
converged to an gptimal solution; it is not the purpose of this thesis to evaluate the optimality of each protocol, but to
compare their relative performances. Any non-optimal solution will increase average traversal time, and thus penalize the
protocol in the final analysis.

22

Due to memoty limitations in the Sun workstations, these sources were limited to one per

~ globe octant (8 total).

3. Uniform destination distribution: While it is known [Cha89] that the probability of a
particular destination site decreases as the distance from the source increases, modeling
destination addresses with an exponential, rather than a uniform, disttibution leads to
localized islands of activity in the network. Because it was desired to exercise as many of the

routing nodes as possible, a uniform distribution for destination addresses was also adopted.

4. Address binding is handled on a geographic basis as proposed by Shacham [Sha88].
Groundstation traffic is handled by the nearest network satellite. Actual address lookup at
call setup is assumed to be handled by higher level protocols and is therefore ignored in the

simulation.

5. Infinite buffers: Similarly to the assumption on error freedom, the addition of finite
buffers to the simulation would only lead to an increase in data traffic as sources re-send
rejected packets. Therefore, because the simulations were run at multiple loading levels

anyway, finite buffers would not have added anything to the compatison.

During operation of the simulation, topology update packets are given queue priority
over data packets. This choice increases the protocol convergence rate, which has the

benefit of reducing extra sojourn time due to outdated routing information.

Simulation of orbital mechanics is handled by the SatLab simulation tool. Satlab
handles otbital perturbations caused by the Earth’s oblateness and other factors, as well as
relative node positioning and field of view. SatLab assumes two nodes are obscured if they

are separated by the surface or over 90 km of atmosphere [Sat95].

23

3.5 Vierification | Validation

3.5.1 Routing Algorithm Verification Bach routing algorithm was constructed in a specialized
BDE* framework that mimicked the full simulation from the router’s point of view. Each
protocol was verified against three small test constellations for which the optimal
spanning tree had been calculated by hand. After each satellite update period, the state of

the netwotk was dumped and compared with the optimal solution.

Once each protocol had successfully passed the test constellations, it was placed into the
full simulation and run at a very low traffic intensity to verify that the protocol could operate

with the full compliment of network and would converge to a solution.

3.5.2 Designer BDE Verification Initial modifications to the Designer SATCOM example
system wete cartied out by Capt Doug Stenger [Ste96] for a parallel thesis effort; and first
level vetification of the BDE was accomplished there. Further modifications were

enacted to accommodate the different source and destination setup in this thesis.

These further modifications wete verified by single-stepping the simulation for each
packet type through all possible simulation sub-paths. At each step, the actual response of
the packet was verified against expectations and each packet delay verified against hand-

calculated values.

3.5.3 System Validation Because there are currently no LEO systems in operation,
validation consisted of attempting to keep as close as possible to the published system
proposals. When a choice was available, the corresponding data value from the Iridium
proposal [FCC91] was used. For instance, the satellite data rates, available crosslinks, and
multiple data access delay were all taken from that document. Other values, such as the
data packet size, were atbitrarily chosen based upon experience with reasonable network

values.

4 BDE stands for Block Diagram Editor, but here it is used to generically refer to the Designer simulation schematics that are
edited using the Block Diagram Editor.

24

3.5.4 Summary Through the methods described above, a simulation of the LEO operating
environment was constructed for each routing protocol. Multiple simulations runs at
various loading levels and in different constellation families were executed to assess

protocol performance. The results of those simulations can be found in Chapter 4.

25

4. RESULTS AND ANALYSIS

4.1 Accnracy

Any conclusions drawn from simulated data ate only as good as that data. It is therefore
important to be reasonably certain that the statistics drawn from the data are representative
of the population. For this purpose, the method of determining confidence intervals with a

specified precision as discussed by Banks, et. al. [BaC96] was employed.

Rearranging Bank’s equation to solve for the confidence interval half-length given a

fixed number of iterations, we obtain the following:

evR
Ly < —S‘ 4.1

Here € is the precision to which it is wished to obtain the confidence for the statistic, R
is the number of independent replications, and S? is the sample variance. From equation 4.1,
the maximum confidence of the data can be determined by integrating the density function
for the Student-t distribution with the appropriate degrees of freedom and calculating the

percentage area. The Student-t density function is:

0~ (1+5) o 0z

Using numerical integration®, table 1 lists the confidence levels obtained from the data
for 1% accuracy on the mean. That is, the table indicates the relative certainty that the
sample mean is within 1% of the true population mean. The number in parenthesis is the
number of independent repetitions completed for that data. The Datting protocol shows
such high convergence variance that even with extra repetitions confidence is low. Also,

due to long simulation execution times, fewer iterations were completed at higher loads, and

5 Via Matlab’s Quad8 function.

26

the averaging of partial simulation runs of different lengths leads to somewhat artificially low

confidence values.

Table 1: Data Confidence

Constellation | Protocol Statistic 1% Load | 10% Load | 20% Load
Globalstar Bellman-Ford | Convergence | 0.92 (3) 0.97 (3) 0.14 (2.5)
Delay 0.99 3) 0.99 (3) 0.15 (2.5)
Overhead 0.96 (3) 0.99 (3) 0.49 (2.5)
Darting Convergence | 0.17 (11)] 0.16 (3) 0.04 (1.5)
Delay 1.00 (11) [0.83(3) 0.19 (1.5)
Ovethead 099 (11) 0993 0.18 (1.5)
Iridium Bellman-Ford | Convergence | 0.96 (3) 0.56 (1.5) 0.46 (1.5)
Delay 0.98 (3) 0.98 (1.5) | 0.81 (1.5)
Overhead 0.97 (3) 0.87 (1.5) 0.91 (1.5)
Darting Convergence | 0.09 (11) | 0.01 (1.5) 0.01 (1.5)
Delay 1.00 (11) | 0.78 (1.5) 0.44 (1.5)
Overhead 0.94 (11) |0.14(1.5) |0.01 (1.5)

(Load percentages are defined with respect to the Iridium ground to space maximum data rate of 12.5 Mbps [FCC91].)

4.2 Simulation Mechanics

As mentioned in the previous section, difficulty in simulation execution was encountered
at the higher loading levels. Indeed, it proved impossible to execute simulations within the
64 megabyte RAM constraints of the shared Sparc-20 workstations above a 20 percent load.
Post simulation analysis (i.e. hindsight) showed this to be caused primarily by a sub-optimal
packet design. (See Appendix A for details on the structure used.) The design was adapted
from the demonstration satellite communication system provided with the Designer
simulation package. It employed a shell-within-a-shell embedding structure the turned out
to greatly increase the overhead associated with packet book-keeping. Measurement using a
memory monitor showed about 16K per packet being used. With about 20 million packets
being generated per simulation run, and roughly 210 accesses per packet along a typical
route through the network, over 66 terabytes of information is being processed per run.
With 80ns RAM in the Sparc-20s, this yields a run-time surptisingly close to the 7 week

runtimes actually encountered. Additionally, output from Designer’s profiling utility shows

27

over 50% of CPU time involved with insetting, temoving, and type-converting packet
information. While this excessive runtime led to some ragged run-lengths at the higher

loads, the overall trends for the data are clear and ate detailed below.

4.3 Individual Protoco! Data
4.3.1 Extended Bellman-Ford (Globalstar): Figure 5 and Figure 6 below show the packet

end-to-end delay characteristics of the Bellman-Ford Protocol over time. Discounting the

Mean Delay - GSexBF [8-Oct-1996 6:39:50]

Mean Delay - GS-exBF

0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11
0.10

Delay (s)

800. 1000.

Od
N
o,
=
N
o,
o
[*)]
o,
S

Time (s)

4 1% o 10% = 20%

Figure 5: Bellman-Ford Mean Delay in Globalstar

first 60 seconds, Bellman-Ford shows an average delay time of 0.1128 seconds at a 1%
load, 0.1147 seconds at 10%, and 0.1379 seconds at 20%. This is a 1.73% increase from
1% to 10%, and an 18.98% increase from 10% to 20%96. Maximum packet traversal delay

averages 0.1687, 0.1842, and 0.3157 seconds respectively, or a 9.07% increase from 1% to

6 Percentage changes are calculated by computing a delta for each pair of datapoints and calculating the percentage of the
base value that delta represents. The number quoted in the text is the mean of these percentages, and thus may deviate
slightly from the same calculation applied to the average numbers from the previous sentence. It is important to notice
that because the percentages reference different bases, the 1-10% and 10-20% figures ate no? directly comparable.

28

10% and 69.56% from 10% to 20%. An interesting (and unexplained) feature of the
graphs is the instability in the 20% runs during the 900 second update period. While the
1% and 10% numbers also show a spike at this time, they quickly return to steady state.
This is not the case with the 20% runs, however. The rise in packet traversal time is
accompanied by a large growth in the queue size of satellite #21. However, because the
simulations requite over 7 weeks to reach this point, extensive experimentation to
discover the cause was infeasible. The most likely culprit is the loss of routing
information packets in a transient loop that exceeded the maximum hop-count,
preventing network convergence, as the records show several packets removed from the

network at this point for that reason.

The increasing trend shown by the data is predominately caused by the increasing

distance of the satellites from each other with time.” The slope of the increase reduces

Max Delay - GSexBF [8-Oct-1996 6:39:50

Max Delay - GS-exBF

o
o

e
3

o
)

o
o

0.4

Delay (s)

0.3

0.2

[AN1 XNREE INGR1 INNE1 IRNRE RARN1 ARET

Time (8)

4 1% o 10% * 20%

Figure 6: Bellman-Ford Maximum Delay in Globalstar

7 Examining one of the paths in the Iridium constellation shows an average delta of 152km per 60 second update period
between the groundstations and the uplink satellite, 80km between satellites in co-rotating planes, and 500km in counter-
rotating planes. Disregarding everything except the up and down-links, that’s 2 links * 152km * 1sec/3e8m = approx. 1
msec per update. This is of the same magnitude as the slopes seen in the graphs.

29

around 600 seconds because one of the routes has reconfigured to a shorter link at that
point. Conversely, at around 800 seconds, a jump in the mean hop count indicates that one
of the links along the preferred route has become inactive and required use of a longer path.
Looking closely at the 10% mean delay data, it can be seen that delay within a satellite
update period is faitly constant, with very noticeable stepping between updates in the 300-

500 second range.

As the amount of traffic in the system increases, queuing delays begin to play a factor in
delay, as can be seen in the higher mean delay and variability in the 20% data. Individual
spikes corresponding to network re-configuration can be seen in the mean data at 422, 486,

and 546 seconds. Similar performance is seen in the maximum delay data.

Convergence time for Bellman-Ford in Globalstar is fairly constant across the entire
simulation, with peaks of activity at 420, 600, and 660 seconds due to several network links

re-configuring at those times (Figure 7). The first two data points ate discarded as startup

Convergence - GSexBF [5-Oct-1996 15:50:55 |
Convergence Time - GS-exBF

L]

0.25

0.20

Time (s)

0.10

0.05

lllII|III||I||IIIIIII|IIIIIIIII

od .

0.00

200. 400. 600. 800.
Time (s)

8 1% o 10% = 20%

Figure 7: Bellman-Ford Convergence Time in Globalstar

30

transients (the protocol takes several shortcuts duting that period to diminish required
simulation time). 'The slope of the trend line is due to the increasing propagation time

mentioned above.

Apatt from the general trends, convergence time averages 0.1609 seconds at 1% load,
0.1606 seconds at 10%, and 0.1605 seconds at 20%. This corresponds to a 0.19% change
from 1 to 10% and a 0.26% change from 10 to 20%.

Regarding overhead petformance (Figure 8), the data shows no real surprises. Keeping
in mind the fixed packet headet overhead requited to transmit data (30.72, 153.6, and 307.2
Mbits), the ovethead requited to converge the constellation is constant with respect to
loading level and increases significantly only during times of increased convergence activity.
Specifically, ovethead traffic accounts for 48.05% of total traffic at 1% load, 24.29% at 10%,
and 22.21% at 20%.

Overhead - GSexBF [5-Oct-1996 15:50:55 |
Scale=10"6 Overhead - GS-exBF
1200. - o © 0o 0o 0 0o o © 0 o 0 0O 0 o ©
1000. =
800.
2 600 .
-—— . | Lo} e} [o] o]
o ~ o o) o o o o] o o [o]
400. = o a
: o [w] [w] [u] D a o n o o] n a
200. = e 85 e o 8 08 " o " " o o & .
0. _: o o 9 v 9 @ @ o R -
= I T T T T T T T T T T l T
0. 200. 400. 600. 800.
o Data1% Tlme = Overhead 1%
© Data 10% o Overhead 10%
O Data 20% O Overhead 20%

Figure 8: Bellman-Ford Overhead in Globalstar

31

4.3.2 Bellman-Ford (Iridium): Bellman-Ford’s performance under Iridium is roughly
equivalent to Globalstar, obtaining slightly faster traversal time at the expense of
marginally higher overhead. This is most likely due to the shorter average link length
under Iridium due to its larger number of satellites. Under low loads, there is actually

more overhead traffic than data traffic traversing the network.

As shown in Figure 9 and Figure 10, data traversal times average 0.1003 seconds at 1%,
0.0970 seconds at 10%, and 0.1078 seconds at 20% (2.17% and 11.18% increases
respectively) and maximum observed delays averaged 0.2129 seconds at 1%, 0.1709 seconds
at 10%, and 0.2441 seconds at 20% (12.62% and 47.46% increases.) Spikes are visible at the
more active update times, with a transient routing table loop causing a large spike at 420

seconds.?

Mean Delay - IRexBF [3-Nov-1996 7:31:00]

Mean Delay - IR-exBF

A

Delay (s)

LY
Iy A AAAAN, A ey

600. 800. 1000.
Time (s)

A 1% o 10% = 20%

Figure 9: Bellman-Ford Mean Delay in Iridium

8 Cheng has also proposed a more complex version of Extended Bellman-Ford which eliminates these transient loops.

32

Max Delay - IRexBF [3-Nov-1996 7:31:00]
Max Delay - IR-exBF
7.
6. o
5 o
.-
=z 3
° > 4
N =
2. _'_'
1. 3 . R .
- 8 2
0. g memmideatismenedates mian snsn s "
0. 200. 7400. 600. 800. 1000.
Time (s)
A 1% o 10% .« 20%

Figutre 10: Bellman-Ford Max Delay in Iridium

Convergence times fort Iridium (Figure 11) show more variability than Globalstar due to
highet reconfiguration activity in Iridium (links begin to reconfigure at 180 seconds as
opposed to 420 seconds in Globalstar). The large increase at 420 seconds is due to the

packet spike mentioned above. Convergence times average 0.9894 seconds at 1%, 0.4389

Convergence - [RexBF [3-Nov-1996 5:17:49]
Convergence Time - IR-exBF

Iy

Time (s)
[A A L e B -

| IYET1 FEST1 IRUR1 SYRTY INETY IYRYT IE0T) ITA,

Figure 11: Bellman-Ford Convergence in Iridium

33

seconds at 10% and 0.4233 seconds at 20% (3.26% and 5.20% increases.)

Overhead accounts for 77.05% of total traffic at 1% load, 35.79% at 10%, and 28.84%
at 20% load (see Figure 12).

Overhead - IRexBF [3-Nov-1996 5:17:49 |

Scale=10"6 Overhead - IR-exBF
3000. =
2500. =
2000.
2 o
) 1500. —:
- o 0O 0 O O O o©
1000. =
= o o o o o B
500. = ° . B g o = =
— o o :' 2] a "
0. _: ° g) ° 5 M o o ° o o 8 o o ° °
T T —— T
0. 200. 400. 600. 800.
o Data 1% Tlme = Overhead 1%
© Data 10% o Overhead 10%
O Data 20% O Overhead 20%

Figure 12: Bellman-Ford Overhead in Iridium

4.3.3 Darting (Globalstar): The delay results for Darting in Globalstar show visible spikes
at almost every positional update (Figure 13 and Figure 14). These are most likely caused
by sutrges of routing update packets as the network attempts to re-converge. Average
delay is 0.1132 seconds at 1% load, 0.1174 seconds at 10%, and 0.1319 seconds at 20%
(3.68% and 17.48% increases). Maximum packet delays averaged 0.2442, 0.2968, and
0.4280 seconds respectively (25.59% and 57.19% increases.)

34

Mean Detay - GSDart

[29-Sep-1996 13:54:33]

Mean Delay - GS-Darting

0.30 =
. 025
v .
® §
[. °

0.15 .E o ® o o

0.10 _:

0. 200. 400. 600. 800. 1000.
Time (s)
A 1% o 10% « 20%

Figure 13: Darting Mean Delay in Globalstar

Max Delay - GSDart

[29-Sep-1996 13:54:33 |

Maximum Delay - GS-Darting

2.5
20 = o
© 15 4 o
£] o °
o e A
i: 1.0 —_ .
b ° o ° 4 A
7] o s » A A °
0.5 -: : -) 5) AA A \ oA R A
T on s el A S 35 B e s o e, s s o
0. 200. 400. 600. 800. 1000.
Time (s)

4 1% o 10% - 20%

Figure 14: Darting Maximum Delay in Globalstar

35

In Figute 15, convergence time shows an inverse relationship to data rate. At the 1%
loading level, Darting does not have enough data traffic to embed routing updates in,
handicapping the convergence rate. At 10% and 20%, enough traffic has become available
to significantly reduce convergence times. Specifically, at 1% load, Darting takes 5.47
seconds to converge. At 10%, it takes 1.36 seconds, and at 20% it takes 1.86 seconds. This
cortesponds to a 75.77% dectease from 1% to 10%, and 51.40% increase from 10% to 20%
load. (The higher number for 20% load is most likely due to those datapoints being results

from a single iteration, while the 10% numbers ate the average of 3 iterations.)

Convergence - GSDart [28-Sep-1996 4:52:12]
Convergence Time - GS-Darting

9. —: 'y

8. =

7. 5 \ .
’U? 6. —g R 8 *
~ 5. 5
o) E N N ¢
e 4. = a A s
F s =

2. -E °

1. = 8 o °

0. & . .

0. 200 4do. 600 8do.
Time (s)
4 1% o 10% 20%

Figure 15: Darting Convergence Time in Globalstar
Darting overhead (Figure 16) also shows a strong dependency on the data rate,

occupying a relatively constant percentage of the traffic. Overhead occupies 46.08, 44.27,
and 44.13% of the total traffic at 1%, 10%, and 20% loads respectively.

36

Overhead - GSDart [28-Sep-1996 4:52:12]
Scale=10%6 Overhead - GS-Darting
1200. - o © 0 o o 0o o ©
1000. e}
- p o0 o g ©O o o O
800. =
2 600 .
- . ol o] [+] () o]]
m - o] (e} e} [o] (o] [v] [e] [o] (o] o
: a o a o o o o -] a o o a o o o
400. -
200. -
: e ° 9 e -] ° 9 ° e e ® 2 ? Q ?
0. = o
0. 200. 400. 600. 800.
o Data 1% Tlme = Overhead 1%
© Data 10% o QOverhead 10%
O Data 20% 0 Overhead 20%

Figure 16: Darting Overhead in Globalstar

4.3.4 Darting (Iridinm): Like Bellman-Ford, under Iridium Darting also displays a slight
improvefnent in packet traversal times (Figure 17 and Figure 18). It has an average
traversal delay of 0.0978, 0.1116, and 0.1087° seconds (13.72% and 14.40% changes) and
an average maximum delay of 0.2645, 0.4179, and 0.3468 seconds (48.28% and 68.85%).

Convergence time (Figure 19) shows a drastic difference from Globalstar, with Darting
being unable to handle the extra satellites during the petiods of highest activity. Because of
this, Darting averaged 12.29 seconds to converge at 1%, and failed to converge for some
iterations during the positional update at 600 seconds. At this time there was insufficient
data traffic for Darting to accommodate all the changes in the network. Darting averaged
7.99 seconds to converge at 10% and 1.067 seconds to converge at 20% load. (65.83% and
34.45% decreases.)

? The decrease in the 20% numbers is due to incomplete data. The simulations did not reach peak activity times.

37

Mean Delay - IRDart [23-Oct-1996 10:22:40]

Delay (s)

0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

Mean Delay - IR-Darting

°

400. 600. 800.

Time (s)

4 1% o 10% . 20%

1000.

Figure 17: Darting Mean Delay in Iridium

Max Delay - IRDart [23-Oct-1996 10:22:40]

Delay (s)

5.5
5.0
4.5
4.0
3.5
3.0
25
2.0
1.5
1.0
0.5
0.0

Maximum Delay - IR-Darting

o

]
o a ° 4 .
e % a s :A Z 2 ° Ao ’ 4 g AA
mm:ﬂhm E—_— MMAMMW'QMW el s, ot L0
0. 200. 400. 600. 800. 1000.
Time (s)

A 1% o 10% o 20%

Figure 18: Darting Maximum Delay in Iridium

38

Convergence - IRDart [19-Oct-1996 14:11:11]
Convergence Time - IR-Darting

60. ;
50. o .
@ 40. -; \
® 30 -
S 3
= 20. = \
10. . .o
3 O 8 soa
0. -E . N . 8 @ ° ° ° °
d. 2do. 4do. 6d0. 8do.
Time (s)
A 1% o 10% - 20%

Figure 19: Darting Convergence Time in Iridium

Ovethead (Figure 20) shares similar trends with the results from Globalstar, with the
values showing a slight increase most likely due to the incteased number of satellites.
Overthead traffic accounted for 48.87%, 46.86%, and 45.42% of total traffic at the 1%, 10%,
and 20% loads.

Qverhead - IRDart [19-Oct-1996 14:11:11]
Scale=106 Overhead - IR-Darting
1200. - o O 0 o
1000. = o 9 o
7 o
800. =|
2 600 - o
- — . (o] o o [+] [e] o
o - o o ° ° o o ° ° o Q
400. | :
200. |
: ? © ° @ e ° ® . ® s ° . °] °
0. =| o
0. 200. 400. 600. 800.
o Data 1% Tlme ~ Overhead 1%
© Data 10% o Qverhead 10%
O Data 20% 0O Qverhead 20%

Figure 20: Darting Overhead in Itidium

39

4.4 Comparative Performance Results
4.4.1 Mean Traversal Delay Figure 21 and Figure 22 show close-ups of the mean delay
performance. ‘There is almost no significant difference between the traversal delay

petformance of the protocols on cither constellation at any of the loading levels, except

Comparison: Mean Delay (Zoomed) -GS [8-Oct-1996 6:39:50]

Mean Delay - GS

Time (s)

Solid: Dashed Time (s)

Dart 1% exBF 1%

Barigh SRR

Figure 21: Comparison - Globalstar Delay

immediately after the a satellite positional update. At those times, Darting shows delays
many times latger than those incutred by Bellman-Ford. In several cases, delays for
Datting exceed the teal-time threshold of 400ms by 200-300%. Over most of the range,
Bellman-Ford enjoys fractionally better performance, most likely due to Darting’s greater
overhead (see below). Specifically, on average Bellman-Ford is 0.72% faster at 1% load,
2.39% faster at 10%, and 13.00% faster at 20% in the Globalstar constellation. It is 1.74%
slower at 1%, and 7.56% and 3.074% faster at 10% and 20% in Iridium.

10 The slower performance of exBF at 1% is due to the packet spike at 420 seconds mentioned in the previous section.

40

Comparison: Mean Delay {Zoomed)- IR [3-Nov-1996 7:31:00]

Mean Delay - IR

Time (s)

Solid: Dashed Time (s)
Dart 1% exBF 1%

Bart 26% R

Figure 22: Comparison - Iridium Delay

Regarding convergence (Figure 24 and Figure 23), Darting’s reliance on data traffic to
piggy-back routing information makes it very sensitive to low data rates. At the loading
levels investigated, Bellman-Ford turned in consistently better performance. At the lowest
data rate, it was not uncommon for Darting to converge an otder of magnitude slower than

Bellman-Ford. The disparity narrows considerably at higher data rates though, and most
likely becomes negligible at greater loads.

Under Globalstar, Bellman-Ford converged on average 3,582% faster than Darting at
1% load. It converged 764.4% and 1283% faster in the 10% and 20% cases. In Iridium,
Bellman-Ford turned in petformances 2661%, 496.2%, and 339.7% bettet than Datting.

41

Comparison: Convergence -GS [5-Oct-1996 15:50:55]

Convergence - GS

9,
8.
7.
—_ 6.
o)
~ 5.
(O]
e 4,
= s
2.
1. " o ”
g —
0. -0~ - p_ B--F--R- - R0
0. 200. 400. " 600. 800.
Solid: Dashed Tlme (S)
o Dart 1% = exBF 1%

0 Dart 10% o exBF 10%
O Dart 20% O exBF 20%

Figure 23: Comparison - Globalstar Convergence

Comparison: Convergence - IR [3-Nov-1996 5:17:49]

Convergence - IR

o)
=

Time (s)

w
S
1 FYNE ITUT1 INETI ANRR1 NNl U |

400. 600. "800.

Ox
N
Ou
o

Solid: Dashed Tlme (S)
o Dart1% = exBF 1%

© Dart 10% o exBF 10%

O Dart20% 0 exBF 20%

Figure 24: Compatison - Iridium Convergence

42

While the petformance of both protocols is roughly equivalent for steady-state at higher
data loads, Darting obtains this patity only at the expense of a much higher overhead (Figure
25 and Figure 26). In Globalstar, Darting has 149.1%, and 179.0% more ovethead than
Bellman-Ford at the 10%, and 20% levels. Only at the 1% loading level did Darting show
better performance, having 15.38% less overhead. Under Iridium, Darting again has an edge
only at the 1% data rate. However, while Darting enjoys an average 70.30% decrease in
ovethead from Bellman-Ford at 1%, at 10% and 20%, it incurs a 57.42% and 132.8%

increase in overhead.

Comparison: Overhead - GS [5-Oct-1996 15:50:55]
Scale=10"6 Overhead - GS

Bits

0. ' 200. " 400. 600. 800.
Solid: Dashed Tlme (S)
o Dart 1% « exBF 1%

o Dart 10% o exBF 10%
O Dart 20% o exBF 20%

Figure 25: Compatison - Globalstar Overhead

Because Darting encodes link state information into every passing data packet, it is
extremely sensitive to the tesolution of this parameter. In this thesis, link state was encoded

as a 32-bit integer cotresponding to the intet-satellite distance!!. Reducing this to a 16 bit

11 The Designer built-in integer size is 32 bits.

43

Comparison: Overhead -IR [3-Nov-1996 5:17:49]
Scale=10"6 Overhead - IR

1000.
900.
800.
700.
600.
500.
400.
300.
200.
100.
0.

I
)
}
t
1
i
1
]
I
1

T
1
1
i
I
]
1
1
1
!
i
|
)
¥

Bits

]
1
i
1
1
1
1
4

0. 200. 400. 600. 800.

Solid: Dashed Tlme (S)

‘o Dart1% o exBF 1%
o Dart 10% o exBF 10%
O Dart 20% 0 exBF 20%

Figure 26: Comparison - Iridium Overhead

integer would improve Darting’s performance roughly by a factor of two, bringing it closer

to the Bellman-Ford numberts.

4.5 Summary

In almost evety statistic measured, Extended Bellman-Ford had better performance than
Darting. Darting’s greatest handicap was the correlation between overhead, traffic intensity
and path length. The requitement for each node to append its local environmental data to

evety passing packet resulted in a much higher overhead and slightly longer traversal times.

Darting also showed much higher traversal delay instability at network positional
updates than Bellman-Ford. Again, this is most likely due to Darting’s reliance on data-
triggered convergence. Because propagation is the predominate delay component at these
loading levels in the LEO environment, several packets from a burst may be forwarded
incotrectly before updated routing information arrives at the transmitting node.

Unfortunately, Darting will generate an update packet for esery incorrect packet that is

44

transmitted, clogging up the reverse channel with unnecessary updates (which have queue

priority over data packets.)

45

5. CONCLUSIONS

5.1 Protocol Applicability to the Orbital Environment

Contraty to expectations, for the charactetistics measured there is a clear advantage to
employing a distance vector routing protocol such as Extended Bellman-Ford over Datting
as traffic intensities increase. Darting is severely handicapped by the requirement to place
link data in each passing data packet. This results in overhead several times larger than
Bellman-Ford on the same constellation, eliminating the savings realized from Darting’s
selective update mechanism. Massaging the frequency of update insertions and tweaking the
resolution of the link weight function would seem critical to obtaining good petformance
from Darting. Better overhead results could have been obtained from Darting (at the

expense of convergence rate) by re-adjusting these parameters.

Mean packet traversal delay for each protocol was within a few percentage points
difference at all loading levels. However, neither protocol succeeded in keeping worst case
delays completely within the 400 millisecond real-time limit. Maximum delays on the order
of seconds were experienced by each protocol during some satellite positional update
periods. Some of this delay may be an artifact of having satellite updates occur
synchronously throughout the constellation. Allowing each satellite to initiate an update

cycle independently would spread the update load over a wider time interval.

5.2 Simnlation Problems Enconntered

These simulations juggle a huge amount of data. Instantaneous RAM requitements
during peak update periods for some of the simulations are more than 300MB. The 10%
simulations take over a month of machine time to complete at top ptiofity on a Sparc-20. If
forced to use virtual RAM, the simulations complete less than 1 millisecond of simulation

time per day.

46

Unfortunately, during the time the simulations were in execution, the half-life of the
average Sparc station seemed to be about 2 weeks. Cumulatively, this caused the loss of
close to a machine-year of simulation time. The addition of the ability to check-point a
Designer simulation would have been invaluable. As it stands, further effort is needed to

optimize the simulations for memory use before trying to extend this work.

5.3 Recommendations for Future Work

Aside from streamlining the memory requirements of the simulation, there are several
theoretical aspects of the project that could be enhanced. First, the link formation
subroutine of the routing protocols is embarrassingly primitive. Currently, links are formed
with the closest 4 satellites, regardless of direction. Then those links are held untl the
partner satellite travels out of range, even if a more optimal satellite becomes available.
Work should be done to form links at evenly spaced headings and optimal distances to yield
better paths through the network.

Second, a link-state protocol (such as OSPF) should be added to the comparison to
determine if any better performance can be provided by that class of algorithms. Also, the
protocols should be exercised at higher loading levels if memory requirements can be

lowered sufficiently to allow execution on the Sparc-20s.

Third, additional ground stations should be added. The single transmitter located in
each octant of the globe did not yield a completely uniform load on each node in the
network. Addition of more groundstations might yield smoother data. Again, this would

only be feasible if memorty requitements of the simulation were lowered.

5.4 Conclusion

The overtiding delay component at the loading levels investigated is the propagation
delay between nodes. Because there is usually only one optimal path to any destination,
protocol merit is determined by how quickly and efficiently an algorithm can determine the

components of that optimal path. In a satellite system, power is a critical resource. Thus

47

protocol overhead is an important parameter to manage. Each unnecessaty bit of overhead
is wasted transmission power. For the environments tested, Extended Bellman-Ford has a
significant advantage over Darting in this area. It obtains equal performance faster and with
a smaller overhead. Mote work needs to be done to optimize Darting befote it should be

consideted for use in LEO networks.

48

APPENDIX A

Detailed Simulation Definition

A.1 Designer BDE

As briefly touched upon in Chapter 3, a top-down approach was used to design the
simulation program files. ‘This appendix will continue the discussion through all the
Designer sub—schematiés. Other than the actual routing blocks and the top-level schematics,
all pieces of the simulation are identical for both protocols. The explanation will begin with

the top-level memory and parameter variables.!?

Starting at the top left of Figure 27, the six temporal parameters are fairly self-

Toplevel-DARTING [26-Aug-1996 10:12:52]

3 Bursty Earth In
Transmitters > > DARTING Update p,[08

| |5 Route g Histo >
TP Year §P Second Select

TP Month §P Minute
1P Day $P Hour

[M Number of Nodes

[R] Nodal Resource

(M Number of Mobiles Yfta Packel |3 DESTINATION
{M Number of Satellites [Oata Pagket | 9 REACHED?
Number of Earthstations

% oo S i A - Data Packel g TP Mean number of pulses per burst

outing table ory A Analysis TP Inter-Pulse Time (during burst)
@ Distance table memory ﬂ‘P NodePositionUpdate Time Defay
(M Elevation Table Mem phaate

& ot e Memory osl, Kag(et‘ 1P Mean Delay Between Bursts
% \SzglﬂvLana‘blde h::'fx:'d _ s TP Sat-> Earth Data Rate

e Latitude Table Memory 3 [TP Eanh-> Sat Data Rate
[M Mobile Altitude Table Memory P Sat->SatData Rate
]E Interval Packet Counter P Traffic Stat Delay
(E Confused Packet Counter Read&Clear ¢ {P DataBitsPerPacket
[M Rejected Packet counter Counters P Maximum Hops
[M Overhead Accumulator Mem 1P MaxLinks
[Mi Ground-Sat Translation Vector
[POSITIONING]

ws—f eof)
UPDATE =
P posiTions @

—

Figure 27: Simulation Top Level Schematic

12 Throughout this appendix, italicized references represent entities created for this project, while quoted references represent
Designer built-in constructs.

49

explanatory and are used to set the starting time of the simulation. For this simulation, these
parameters were set at 0101:01 hours on 1/1/1998, due to the fact that Iridium is scheduled

to become operational sometime in 1998.

The memory variable Number of Nodes is calculated in the InitMem block. It is the sum of
the Number of Mobiles, Number of Satellites, and Number of Earthstations variables, which are
passed into the simulation from the Satlab program based upon which of the two
constellations is loaded. Distance Table Memory, Elevation Table Memory, Visibility Table Memory,
and Mobile Latitude and Altitude Table Memory are also passed into the simulation by SatLab
and reflect the current physical locations of the entities in the constellation. These variables
are used by the routing protocol to calculate Rowting Table Memory, which is a mattix of next-

hops for every possible source and destination in the network.

The next four variables, Inferval Packet Counter, Confused Packet Counter, Rejected Packet
Connter, and Overhead Accumnlator Memory, collect various statistics used by the analysis
sections. Interval Packet Counter measures the total number of packets generated in the
network dutring each satellite update period (60 seconds), Confused Packet Counter
measures any packets that have exceeded the maximum number of hops (100), Rejected
Packet Counter records the number of packets discarded due to insufficient queue space,
and Overhead Accumulator Memory tallies the number of bits used for routing purposes

during the update interval.

Finally, the Ground-Sat Translation Vector is used by the groundstations to look up the
closest overhead satellite to use as a gateway into the network. It is calculated at the

beginning of each update period by the xfer block.

The second column of parameters are set at runtime and determine the operational
characteristics of the simulation. Mean Number of Pulses per Burst, Inter-Pulse Time, and Data
Bits per Packet are arbitrarily set at 10 pulses, 1 microsecond, and 1024 bits. Earth->Sat Data
Rate, Sat-> Earth Data Rate, and Sat-Sat Data Rate are set at 12.5 Mbps, 12.5 Mbps, and

50

25Mbps, based upon the data rates specified in the Motorola FCC filing for Iridium
[FCCI1]. From these, Mean Delay Between Bursts is calculated to provide an average data rate
from each groundstation of 1, 10, 20 percent of the ground-space data rate. Higher data
rates were infeasible due to RAM limitations on the Sun workstations, and the possibility of
reducing the number of traffic sources was discarded due to Darting’s sensitivity to non-

uniform traffic disttibutions (See Appendix C.)

Node Position Update Time Delay holds the number of seconds between queries to SatLab
for satellite position updates. As mentioned in Chapter Three, this parameter is set at 60

seconds.

Traffic Start Delay is used in the Ping block to delay start of the traffic generators to allow

the initialization of the sub-blocks to complete. Itis setat 1 second.

Mascimum Hops is set at 100, and is used in the Update History block to remove any
packet from the network that has visited more than 100 nodes in an attempt to reach its
destination. Assuming an average packet in an optimal mesh network should have to travel
no morte than half the diameter of the network to reach any destination, 100 hops is slightly
mote than three times the radius of Iridium. Any packet that exceeds this limit is assumed

to be trapped in a routing loop and is removed from the network.

Maxlinks is a parameter passed to the routing protocol to inform it of the maximum
number of adjacent satellites that it may communicate with. Following Motorola’s proposal

for Iridium, this is set at 4 links.

A general overview of the operation of the top-level diagrams was included in Chapter

Three (page 17).

51

The InitMem block (Figure 28) is used to query SatLab for the dimensions of the satellite
constellation currently loaded. A type 1 request is sent into the BSIM primitive'?, which
communicates with the SatLab program and retrieves the requested information. This is

then stored in the memory variables as mentioned previously

InitMem-Da [26-Aug-1996 10:14:10]

tP Year P Month fP Day
TP Hour TP Minute P Second

E T™M Number of Nodes
Start
- B 1>+ > SSIM E: {M Number of Earthstations
Dle ™M Number of Mobiles
VVDre
Y ™M Number of Satellites
> D
> 4 Number 5
“:D > of Nodes
> Number
of Earthstations
Number *
> of Mobiles

| Number —|.
|{> of Satelites =

Figure 28: SatLab Memory Initialization

In the Update Satellite Positions block (Figure 29), the incoming trigger is used to query
SatLab for the satellite positional information, and if any mobile users exist in the simulation,
for their positions also. Additionally, the trigger is stored in a delay block set to the length of
an update period as specified in the top-level diagram. The feedback loop around this delay
block generates a new trigger at intervals equal to the specified delay. This has the effect of

querying SatLab automatically at the end of every update period. These generated triggers

13 A Designer “primitive” is a block whose contents are direct machine code. There are no schematics associated with a
primitive.

52

are also passed back up to the top level diagram to allow action by the other blocks at the

beginning of each new update petiod.

UPDATE POSITIONS-DA [28-Aug-1996 10:14:10)

TP Year P Month §P Day
P Hour $P Minute $P Second
P NodePostiontpdate Time Delay

e |4 Table M lad '
NodePoslion | ssm oo M Distance table memory
Update Timo D> [B 251> : E p Elovaion) ;: 5:3;"73:“”""”
VBRI Vit omory
Ty P Tabio Memory 2

Mcbllo Lattude ™ Mobils Latitude Table Memory
[MobisAiude p §M Mobile Atitude Table Memory
Table Memo $M Number of Moblles

+

VA'AA'A
TET

at
5

Figure 29: Update Satellite Positions Block

The purpose of the Ping block (Figure 30) is to allow only the first trigger of the
simulation run through to initialize the traffic generators. As mentioned previously, this
trigger is also delayed by a specified amount to allow the other blocks in the simulation to

complete initialization before data packets begin to be generated.

Ping-Print [17-Sep-1996 12:32:02]

(M] Trigger Memory + 1

Traffic Trigger out
| I

Trigger in == DO Start
o D 0?7 lF Delay

>

TP Traffic Start Delay

Read
ol INTEGER

Need to send one trigger
start data packet generation.
After the initial trigger is
transmitted, throttle all others.

Figure 30: Update trigger “Ping” throttle
53

Xref (a sub-block in Figure 27) is a primitive block that calculates which satellite is
nearest to each groundstation and updates the translation vector accordingly. As a primitive,

there is no associated schematic for xref. Details of its implementation can be found in

Appendix B.

The function of the Read and Clear Counters block (Figure 31) is fairly self-explanatory.
Upon recetving the end-of-period trigger from Update Positions, the value of each of the
specified memory variables is read and recorded for later analysis. Each vatiable is then reset

to begin counting anew for the next period.

Read&Clear Counters [26-Aug-1996 10:14:10]

fM Confused Packet Counter
TM Rejected Packet counter
TM interval Packet Counter Memory

Trigger :
Read Write
R Confused DB g b Confused

Read Write
P Rejected Pt Rejected @T'

Read Write
P Packets PrRobip Packets

Figure 31: Read intetval counters

Each of the eight groundstations in the simulation is represented by a Barsty Groundstation
block (Figure 32) Each groundstaton has an independent “Bursty Source” traffic

generator. ‘This generator (slightly modified from a Designer built-in version) produces an

Bursty Groundstation [26-Aug-1998 10:14:10]

Insert Packet Out
source DT> from_node B>F110> destination [>
A A A

TP Node Number

M Number of GroundStations

TP Mean Delay Between Bursts

TP Mean number of puises per burst
TP inter-Pulse Time (during burst)
M Translation Vector

Figure 32: Bursty Groundstation Transmitter Block
54

exponentially distributed series of bursts, with individual burst sizes being geometrically

distributed.

At the beginning of each burst, the source and destination of the burst are determined
by the seties of blocks along the bottom of the diagram. First, the node of the current node
is sent into the EIO (Execute in Order) block. From here, it is loaded into two temporaty
local memories. After that, the value is passed to the “xlate” block, which is a built-in
Designer primitive that reads the translation vector element corresponding to the current
node. This produces the node number of a satellite, (or -1 if there is no satellite in range.)
The node number of the source satellite is then stored in yet another local memoty. If this
groundstation does have a satellite in range, the number of groundstations is fed into a
uniform random number generator to determine the destination for the burst. The random
generator employed also takes an additional integer parameter that represents an illegal
number for the output. By feeding in the current node, we can assure that we never

generate a burst with the same source and destination.

Multiple Sonrces (Figure 33) holds an independent generator for each groundstation in the

simulation.

Multiple Sources [26-Aug-1996 10:14:10]

Trigger in Burst Packet Out
5—‘—{2 Grourllldstation g > M Number of GroundStations
_‘@ Bursty DI | TP Mean Delay Between Bursts
Groundstation P Mean number of pulses per burst
Bursty l._ P inter-Pulse Time (during burst
'—L@ Groundstation > i (g)

§M™M Translation Vector

H[[g glrjcl;itr)lldstation DI_L
,_lgg CB%‘r](r)?Jtr‘Ildstaﬁon Dl*'
—‘Q glrjcg?:tr);dstaﬁon ;J_
HI@ (Balrj(r)fjtr)\ldstation ;l_
‘IE glrxcr)itr)\ldstation Di—_‘

Figure 33: Transmitter Instances

55

Bursty Earth Transmitters (Figure 34) encapsulates the data generation function of all
ground stations in the network. The incoming trigger signal initializes the multiple sources
to begin packet generation. Each generated packet’s length is set to the number of data bits
specified in the corresponding parameter, plus 256 bits of overhead. (Eight header fields,
each a 32 bit integer.) The cost field (used by Darting) is set to zeto, and the packet type is
set to one (signifying a new packet). Then a unique sequence number is added and the

interval packet counter is incremented.

Bursty Earth T i DA [26-Aug-1996 10:14:10]

§P DetaBitsPerPacket

M Number of GroundStations §P Earth > SatData Rate 1P counter reset value

TP Mean Delay Between Bursts $M Rejected Packet counter T™ interval Packet Counter Memory
TP Mean number of pulses per burst §M Number of Nodes

TP Inter-Pulse Time (during burst) M Distance table memory

M Transtation Vector $R Nodal Resource

Incr Packet
> E Counter. o]

Normal Data Packet
gets a low priority (0).

Figure 34: Bursty Earth Transmitters

The next section of the schematic encapsulates the data packet into a “Satellite Routing”
data structure. This is a somewhat artificial construct introduced in the Designer satellite
communication example, and allows a single instance of the routing primitive to service all
satellites in the network. For reasons of compatibility with other concurrent thesis wotk,
this functionality was retained, though some data is duplicated in the underlying data

packets.

The from_node field is set by the traffic generator to its node id, and this value is placed
into the Sat-Route packet for use by the transmitter block. A history list is generated and

placed, along with the current time and correct priority, into the routing packet. Lastly the

56

calculated source satellite is placed in the current and next fields, and the data packet is
encapsulated into the finished routing shell. From here, it enters the Earth to Space

transmission block.

In the first stage of the Earth-Saz block (Figure 35), queuing at the outgoing buffer is
simulated. The node number of the soutce is read from the incoming packet and fed into
the dimensioned service block, which contains an independent queue for each node. A
processing delay is added at this point, normally distributed with a mean of 100
microseconds and a variance of 5 microseconds [CIJ89]. The packet is timestamped upon
entry and exit from the queue, and this information is used to update the accumulated delay
recorded in the delay field. Any packets rejected are counted by the respective memory
variable. The queue discipline is FIFO, with incoming higher—priority packets displacing low
priority packets if the queue is full.

EnRoute: Earth > SatDa [26-Aug-1996 10:14:10]

M Number of GroundStations

§M Rejected Packet Counter

1P Earth > Sat Data Rate EARTH _> SAT
£M Number of Nodes

£M Distance table memory
TR Nodal Resource

Set-Foute DS In This module handles node meuealrr;g as
e wel as delays for node qo::g\g

>

s o
' b
*d

Service
<4 (Dimensioned)
Increment
Rejocted S
Packet Counter

Transmission delay is caiculated based on
transmission data rale and TDMA delay.
The data rate is parameterized to provide
modei flexibility between evaluated
conslellations.

Figure 35: Uplink Delay (Earth-Sat) Block

At this point, propagation and transmission delays are calculated, recorded, and applied

to the packet. First the index of the correct entry in the distance table is calculated based

57

upon the number of satellites and groundstations cutrently in the netwotk. The distance is
then used to calculate propagation delay, using a value of 2.97 x 108 for the speed of light.
Simultaneously, the length of the packet is read and combined with the appropriate data rate
to calculate the transmission delay. Additionally, an average TDMA access delay of 30ms is
encountered, based upon Iridium’s 60ms TDMA frame [FCC91]. At this point, the packet

leaves the generation subsystem and appears on the top-level diagram.

Due to the fact that Bellman-Ford completely ignores packet data types, a kludge is
required in the exBF top-level before a new packet enters the routing system, as shown

below in Figure 36.

T2 [26-Aug-1996 10:12:18]

S Insert Out
> Dgta Dr——>

I
>—> Select >
Data_ DY| Coerceto
> SatDsw/ P> =2 D>
payload

Figure 36: Bellman-Ford PacketType Kludge

Upon entty into the Darting Router (Figure 37), the data packet is removed from the
routing shell. The shell then passes through a switch based upon the type of the data packet.
Type 1 and 2 packets are data packets and will be rejoined with the routing shell after being
passed through the Darting algorithm. Therefore the shells enter a simple FIFO buffer to

DARTING Route Select [26-Aug-1996 10:14:10]

r Select P
Pata D]

T

5

Switch E
4-Way I

3 Confused
4 v ofp g o).

" *Ping Packets (Type +/-5)

TM Routing table memory
M Elevation Table Memory
£M Distance table memory
M Confused Packet Counter
M Number of Satetites v 4
$M Intervat Packet Counter Memory F g

Getnext noda in path
from to_node lietd in

TM Number of Mobiles
Sat DS data structure.

D-s M Mobile Lalitude Table Memory
™M Mobile Altitude Table Memory $P MaxLirks
TM Number of GroundStations

Trigger in
-4

Wakeup trigger - Sattab update just completed

Figure 37: Darting Router
58

await their data packets. Type 3 and 5 packets are routing update packets, that will also be
continuing along the network and thus must be rejoined with their shells. Type 4 packets
are packets that are in error, or have reached their destination, thus should be removed from
the network by the Destination Reached block. Thus, if a type 4 packet reaches the switch,
it is an error, and the appropriate counter is incremented. Once the data packet has been
updated with the correct next hop by the Darting algorithm and rejoined to its shell in the
Insert Data block, the Next field of the routing shell is updated with the next hop calculated

by Darting, and the re-combined packet exits the module.

Trigger pulses from the Update Positions block are passed to the Darting algorithm so that
the network nodes may update their link topology tables as the satellites in the constellation

move.

In the event that Darting detects an inconsistency in the current network topology after
examining a data packet, it will generate additional routing update packets to correct the
nodes that are in etror. The Darting module signals the Designer framework that it has
created an update packet by negating the packet length. Any packet that exits the Darting
module with a negative packet length must have a routing shell created before it can proceed
through the rest of the network. This is done in the Encapsulate Packet block, as shown
below (Figure 38).

Buitd New Packet {26-Aug-1996 10:14:10)

Build Network Packet

Insert ngert New Natwork Packet out
P> History D & Time stamp D
A A

R F These packets afle
a:tv i assigned a highd]

oThty e
xla packet.

B IVect

Figure 38: Encapsulate Packet

59

The Bellman-Ford routing schematic (Figure 39) is somewhat more complex due to the

fact that the algorithm itself had no knowledge of packet types. It expects to receive only

update packets, and never generates anything but update packets.

Thus some additional

“software” is required to interface the algorithm with the rest of the simulation.

exBF Route Select [26-Aug-1996 10:12:18 |
Pk
in ps Switch
ol Select D} 4Way
Data B ., Goerceto Setect Bhs
SBSw OTp B, BF

Updatea Out

Sat DS w/

§M Interval Packet Counter Memory
TP Maxtinks M Number of Mobiles
i 5 M Routing table memory fM Number of Sateliites
itoe TM Elevation TableMemory M Mobile Latitude Table Memory
% §M Distance table memory 1M Mobile Altitude Table Memory

i) <<

Update Trigger
—

$M Confused Packet Counter
§M Number of GroundStations

Figure 39: Extended Bellman-Ford router

As in Darting, the incoming data packet is removed from the routing shell and switched

according to its packet type. Data packets are sent immediately on, while update (type 3)

packets are sent into the router. Just as in Darting, outgoing update packets must have a

routing shell built for them before they continue.

Triggers from the Update Positions block are passed to the exBF algorithm also so it can

update its topology tables.

Because the exBF router never handles data packets itself, but only maintains a table of

next-hops, the correct value for the Next field in the routing shell must be read and inserted

in the shell before the packet leaves the router. If the current node knows of no path to the

destination (signified by a -1 in the next hop table), it increments the confused packet

counter and discards the packet.

60

The main functions of the Update Packet History block (Figure 40) are to remove packets
that have exceeded the maximum hop count from the network, and to maintain the history

vector of a packet as it passes through the network.

Update History-Da [26-Aug-1996 10:14:10 }

niiZe. UPDATE HISTORY

Re-integrate the updated History and
Coun\:\?ulues bacﬁ?:h the Sat Route DS.

if packet exceeds number

of allowed ne hapa,
terminate packet and increment
confused packet counter.

to IntVactor

1. 5]
Incs aje Increment the Hop Count
N < counter by 1.

Figure 40: Update Packet History

The EnRonte block’s function (Figure 41) is solely to shuttle type 4 packets (which have
reached their destination) around the Sat-Sat queuing block. This prevents the packets from

picking up sputious delay by passing through the final link twice.

Network C ications-Print__{ 17-Sep-1996 12:32:53 |

™ Rejected Packet counter

f -
S:t e TMNumber of Groundstations

s DS| Switch g
at-Route S
5 C geaga i = - 4-Way Sat-Rpute DS Out M Number of Nodes
. s:'eg ‘(:/ b Setect > AU D —> M Distance table memory
PacketType P |
payload g 1R Nodat Resource

1P sat > Sat Data Rate

39y

Figure 41: EnRoute in Space

The Sat-Sat Delay block (Figure 43) is identical in function to the Farth-Sat delay block,
save a slight modification in the index calculation and the absence of TDMA delay.

61

EnRoute: Sat -> Sat-Da [26-Aug-1996 10:14:10]
M Relsctod Packet Counlor SA I > SA l
1P Sat-> SatData Rate
1M Number of Nodes
1M Distance table memory
1R Nodal Aesourcs M Number of Groundstations
SekFoute DS b0
> This module handles noda q X3
woll as delays for node queu:;q
M andp
SatRouta 0 Oul
satelifte
B
: [o
i'd =2
B service
<l (Dimensioned)
Inaem‘:t b
Packet Counter
Transmission delay |s calculated based on
transmiaslon data rate, The datarate ls
g:rarns(eﬂzad 1o provide model Rexibility
tween evafuated constellations.
Y
Calc
P At >
Delay

Figure 43: Satellite to Satellite Delay Block

The function of the Destination Reached block (Figure 42) is to check to see if a data
packet has reached the satellite above its destination. (Thus type 3 and 5 update packets are
passed immediately through.) It is also here, once the packet has passed through the
propagation delay in the Sat-Sat block, that the Current node field is updated to reflect the

packet’s new position in the network.

DESTINATION REACHED?-Da [26-Aug-1996 10:14:10]

To Data Packet Analynis
S &>

To Updase Packet Ansiysia
B

M Number of Groundstations
M Rejected Packet Counter M Distance table memory
Sarfode 0310 £P Sat->Earth Data Rate $R Nodal Resource
$M Number of Nodes M Translation Vector

Sat-Aouts 05 Oul
°d

[Selact D
PacketType D>

Figure 42: Destination Reached Block

If the destination is not equal to the current node, the packet is passed back to the

routing node to begin an other cycle. If it i at its destination, the packet is passed to the

62

appropriate analysis block for counting purposes; fitst passing through a downlink if the

packet is destined for the surface.

The Sat-Earth Delay block (Figure 44) is similar to the other two delay blocks, save for
the necessity to perform a translation vector lookup to determine the node number of the

groundstation currently being serviced by this satellite.

EnRoute : Sat-> Earth-Da [26-Aug-1996 10:14:10]

oo OATELLITE > EARTH

§P Sat-> Earth Data Rate

TM Number of Nodes

M Distance table memory M Number of Groundstations
TR Nodal Resource M Teanslation Vector

Sa-Route 08I0 This module handles node queusing, as
> wel as delays for noda queding

Distance Caic Propogation
; Transmission delay la cakulated based on Tablo access kb Delay 4
! wansmission data rate. The dala rate is A m A

gslamemized 1o provide model llexbility

>
n evaluated constellations. Need Sat -> Earth

&' A Xmisaion Stuff

Figure 44: Sat - Earth Delay Block

Once a data packet reaches its destination, the delays and overheads associated with its
network traversal are recorded in the Data Packet Analysis block (Figure 45). Delay is
recorded directly by a Designer probe on the incoming routing shell’s delay field (not

Data Packet Analysis [26-Aug-1996 10:14:10]

Data Packet Analysis

Successful
P Packet Counter >

TP DataBitsPerPacket
§M Overhead Accumuiator Mem

[DS S
Coerce to Select D
foad encth UIT > _Real D> -DataBits 4@
>E —B b
DElol;‘,‘
!f;;

Figure 45: Dat®Packet Analysis

shown.) Overhead, however, is tallied on an update-by-update basis using accumulators that
are read and cleared by triggers from the Update Positions block. Overhead is calculated by
subtracting the number of databits in the packet from the total number of bits the packet
has accumulated on its trip through the network. The databits accumulator is simply

incremented by the number of bits in a packet every time a packet artives.

Similar to the Data Packet Analysis block, the Update Packet Analysis block (Figure 46)
tecotds the overhead imposed on the network by the update packets. In this case however,

it is somewhat easier as the entire packet constitutes overhead.

Update Packet Analysis [26-Aug-1996 10:14:10]

Update Packet Analysis
[M Update Packet Counter
M Overhead Accumutator Mem

Coerce to Select D%
B> Select D [> Sat DS w/ l>-{l> acket I [Intto Acc Overnead 1]e
s Data Py—> EIO |t payload A P Rea ST P_"A a P
[v]
]
3
€a
228
SHE
5883
£53
v
Time Between Acc Convergence
»—[@ Triggers_ DHD A %a Dl‘
> Boo—1

> E10 B
l >

End_Batch

Figure 46: Update Packet Analysis Block

Additionally, the block is responsible for keeping track of the amount of time required
for the routing protocol to converge. As was mentioned in Chapter 3, this is accomplished
by measuring and accumulating the amount of time between every delivered update packet,
based upon the premise that when there are no more update packets circulating the network,
the protocol has converged as far as it can. This accumulator is also read and cleared by a

trigger pulse from the Update Positions Block.

04

A.2 Packet Format

As alluded to in the preceding discussion, two different packet data structures are used in

the simulation. They are defined as follows:

'Table 2: Sat Route w/ ptiotity data structure

Field Data Type Range Default | Inhented From

Value
Current INTEGER {0,+Infinity) Sat-Route DS [SatCom_dbs]
Next INTEGER [0,+Infinity) Sat-Route DS [SatCom_dbs]
Data Sat DS Sat-Route DS [SatCom_dbs]
Time stamp REAL [0,+Infinity) Sat-Route DS [SatCom_dbs]
BitErrorRate REAL [0,+Infinity) 0.0 Sat-Route DS [SatCom_dbs]
EbNO REAL [0,+Infinity) 0.0 Sat-Route DS [SatCom_dbs]
Delay REAL (-Infinity, +Infinity) 0.0 Sat-Route DS {SatCom_dbs]
Hop Count INTEGER [0,+ Infinity) 0
History INT-VECTOR
Prionty INTEGER {0,+Infinity) 0

Table 3: Sat DS w/ payload Data Structute
Field Data Type Range Default Inherited From
Value

source INTEGER [0,+Infinity) Sat DS [SatCom_dbs]
destination INTEGER [0,+Infinity) Sat DS [SatCom_dbs]
packet length INTEGER {0, +Infinity) Sat DS {SatCom_dbs]
sequence INTEGER {0,+Infinity) Sat DS [SatCom_dbs]
number
PacketType INTEGER (-Infinity, +Infinity) 1
Cost INTEGER (-Infinity, +Infinity) 0
from_node INTEGER (-Infinity, +Infinity) -1
to_node INTEGER (-Infinity, +Infinity) -1
Payload INT-VECTOR
scl_list VECTOR

65

APPENDIX B

Custom Designer Primitives

Several functions necessary for building the simulation could not be easily cteated with
the primitives provided in Designer. To alleviate this problem, it is possible to write custom
primitives in C++ to provide additional functionality to Designer. The primitives that were
created for this simulation were the two routing protocols, the cross-reference utility “xref”,
and one vector support block. The details of these custom primitive blocks, along with their

C++ code, can be found below. The discussion assumes familiarity with C++.

Note that Designer automatically generates a C++ shell for custom primitives that
handles all the interfacing with the simulation engine. Thus, the portions of the programs
that are machine generated will not be displayed or discussed. For more details on those

portions, see the Designer Modeling Reference Guide [Alt94]

B.1 Darting

The Darting algorithm is the easier of the two to understand, as it is an almost exact
implementation of the algorithm as detailed by Tsai and Ma [TsM95]. One extension to the
protocol had to be made to accommodate the granularity of the traffic sources in the
simulation. Details of the problem and the implemented solution can be found in Appendix

C.

The packet types of Darting are differentiated by a packet type field in each packet.
Type 1 packets are new data generated by one of the ground stations. Type 2 packets are
data packets that have already been processed through at least one node. Type 3 packets are
predecessor update packets as described in [TsM95]. Type 4 packets are packets that have

reached their destinations or are in error that need to be removed from the network and

66

processed in the analysis blocks. Type 5 packets are “ping” packets that implement the

Darting extension mentioned above.

o External Ports:

Input:

SyncUpdate is of type TRIGGER: Description: Triggers bulk link cost updates using the
latest data from SatlLab. The primitive will iterate through every node and generate
any necessary updates.

inbound_npdate is of type Sat DS w/ payload: Description: Accepts input Sat DS w/
payload packets.

Qutput:

outbound_npdate is of type Sat DS w/ payload: Description: Outputs Sat DS w/ payload
packets with appropriate topology update messages based upon the input changes.
One input may result in many several output packets.

routematrix is of type INT-VECTOR: Description: Outputs a Satcom_dbs style global
route table based upon any input changes. However, the primitive updates the
global memory directly, so this output is fairly useless, and is only included for
backward compatibility with Designer.

o External Arguments: (For details, see Appendix A.)
(M) "Routing table memory" is of type "INT-VECTOR"
(M) "Elevation Table Memory" is of type "REAL-VECTOR"
(M) "Distance table memory" is of type "REAL-VECTOR"
(M) "Number of Satellites" is of type "INTEGER"
(M) "Number of Mobiles" is of type "INTEGER"
(M) "Mobile Latitude Table Memoty" is of type "REAL-VECTOR"
(M) "Mobile Altitude Table Memory" is of type "REAL-VECTOR"
M) "Number of GroundStations" is of type "INTEGER"
(P) "MaxLinks" is of type "INTEGER"

o Internal Arguments: These arguments hold the local data of each router.
M) "DummyList" is of type "LIST"
Initialization Value: Uninitialized
Description: Just included so Designer will include the Linked List header file
automatically.

67

(M) "RouteDistance" is of type "REAL-VECTOR"
Description: Holds each node's estimated distance to each destination.
Initialization Value: Vector length: (1) Initial Value: 0.0
M) "NodeMemoty" is of type "VECTOR"
Description: Stores routing state from iteration to iteration.
Initialization Value: Vector length: (1) Initial Value: Uninitialized
M) "OutputQueue" is of type "VECTOR"
Description: Holds packets awaiting output from each node.
Initialization Value: Vector length: (1) Initial Value: Uninitialized
(E) "NextPacket" is of type "EVENT-LIST"
Initialization Value: Uninitialized
Description: Used to schedule a simulation event to output packets from
OutputQueue.
(M) "Neighbors" is of type "INT-VECTOR"
Description: Holds the state of the network links.
Initialization Value: Vector length: (1) Initial Value: 0

*

* Module Name : Darting

* Template Created By : 3.0

* Author: rjanoso

* Last Modification Date: 29-Jul-1996 12:16:29
* Template Date: 29-Jul-1996 12:16:42
*/

The first user-defined section of the Designer template holds global includes and defines

that apply throughout the class. In this instance, ADJLIST is a macro used simplify casting
later in the code. Because Darting does not specify how least-cost paths to a destination are
to be determined, I chose to implement a Dijkstra subroutine to fill that need. This specific
Dijkstra implementation [CoL90] uses an adjacency list format for the network graph. Each
network node has a vector of these lists, one for every other node in the network.

ADJLIST(X,Y) accesses node X's list of all the outgoing edges from node Y. LIST t and

VECTOR__t are built-in Designer classes for linked lists and arrays.

SATDIST is another macro used to abstract the index calculation into the vector of

distances passed into the simulation from SatLab. SatLab encodes each row of the distance

68

table matrix into one long vector, beginning with the groundstations. SATDIST returns this

to a matrix-type format, while automatically adjusting for extraneous groundstation data.

PACKETHEADERSIZE is used in packet length calculations, and is based upon eight
32-bit fields in the packet header.

/***% TIncludes and Defines Below Here #**x*/

#define ADJLIST(X,Y) ((LIST_t&)(((VECTOR_t&)Adjacency[X]1)[Y]))

#define SATDIST(X,Y) Distancetablememory[gstations*(gstations+nodes) +
X*(gstations+nodes)+(gstations+Y)]

#define PACKETHEADERSIZE 256

/**** Includes and Defines Above Here ***%/

This section of the Designer Template is used to create global functions and variables
that can be referenced throughout the class. Detailed descriptions of the functions can be
found preceding the actual code.

/***%* Tnstance Definitions Below Here **%%/
void Init();
void CheckInit();
void update_links();
void rt_update(int curr_node);
void Return_Ping();
void Build_Initial AdjLists();
void Check_Degenerate_Type3(int n_curr, int dest, int n_via, int p_cost);

inline void SyncLinks(int curr_node, int scln_a);
inline void SyncLink (int curr_node, int scln_a, int scln_by);
inline void Relax(int n_curr, int n_from, int n_to);

int FindNode(int node, LIST_t& AdjList):;

INTEGER_t tempint;
INTVECTOR_t tempiv;
TRIGGER_t trig;

LIST t OutList;

VECTOR_t local_scl(l);

VECTOR_t Adjacency(l);

VECTOR_t EmptyaAdj;

SatDSwdpayload_t *TempPacket;

INTVECTOR_t RouteMatrix,outvect, Vi, payload;
REALVECTOR_t DistMatrix;

double simtime;

int gstations, seqnum,outindex;
int nodes;

int MAXLINKS;

int *neighbor;

int **NeighMatrix;

int **RDist;

int **Pred;

69

const float MAXDIST = 1000000000.0; //Satlab uses ten billion for infinity, thus
le+9 is safe.

int initflag;
/**** TInstance Definitions Above Here *#**+*/

The next section can be used to initialize the global variables:

/**** User Constructor Code Below Here ***x/
initflag = -1;
outindex = 1;
/**** User Constructor Code Above Here ***x/

The bulk of the working code appears in this section:

/**** User Code Below Here **#*/

Init is a special function included in the Designer template that is called once for each
primitive during instantiation. Here I use it to set up the event scheduling for output
packets.

void Darting::Init()

{

EVENTLIST_t Temp = NextPacket;
Temp . Extend (NextPacket_Entry());

SetNextPacket (Temp) ;
}

CheckInit is another initialization function that I included to do dynamic arrays based
upon the size of the constellation being simulated. Because the size of the constellation is
unknown until it is read from SatLab, this setup cannot be done at instantiation. Nesghbor is
used to extract the local neighboting nodes from NeighMatrix, which holds the link
information for the whole network. RDisz holds the least cost distances from the current
node to all other destinations, and Pred is the predecessor matrix associated with those

distances. Adjacency is a matrix'# of linked lists, which holds each node’s view of the network

4+ Actually, a vector of vectors.

70

for use by the Dijkstra algorithm, while /fra/_sc/ holds each node’s locally detected status
changed links.

void Darting::CheckInit () //Initialize global variables if needed
{

int i,k;

if (initflag == -1) {
initflag = 0;

neighbor = new int[MAXLINKS];
if (neighbor == 0) {cerr << "Out of Memory!";}

NeighMatrix = new int*[nodes];
if (NeighMatrix == 0) {cerr << "Out of Memory!";}
for (i=0;i<nodes;i++) [

NeighMatrix[i] = new int[MAXLINKS];

if (NeighMatrix[i] == 0) {cerr << "Out of Memory!";}
for (k=0; k<MAXLINKS;k++) NeighMatrix{i][k] = -1;
}//for i

RDist = new int*[nodes];
if (RDist == 0) {cerr << "Out of Memory!";}
for (i=0;i<nodes;it++) [

RDist[i] = new int[nodes];

if (RDist{i] == 0) {cerr << "Out of Memory!";}
for(k=0;k<nodes;k++) RDist{i][k] = -1;
}//for i

Pred = new int*[nodes];
if (Pred == 0) {cerr << "Out of Memory!";}
for (i=0;i<nodes;i++) [

Pred[i] = new int{[nodes};

if (Pred[i] == 0) {cerr << "Out of Memory!";}
for(k=0; k<MAXLINKS; k++) Pred[il]l (k] = -1;
1//for i

LTIST_t AdjList;

VECTOR_t AdjVect(nodes,AdjList);

EmptyAdj = AdjvVect;

Adjacency.ChangelLength(nodes);

for (i=0;i<nodes;it++) Adjacency[i] = AdjVect;
DistMatrix.ChangeLength (nodes*nodes, MAXDIST);
RouteMatrix.ChangeLength(nodes*nodes, -1);
tempiv.ChangeLength(1l,-1)
local_scl.ChangeLengthVECTORDefaultvalue(nodes, tempiv);
local_scl[0]=tempiv;

1//if initflag
1//CheckInit

The FindNode function determines if the specified destination node is an immediate
neighbor to the current node. If the requested destination is adjacent to us, it returns the
index into the adjacency list of the link information. If not, it returns -1. The Designer
linked lists are prioritized lists, and the node number of the destination is encoded as the

priority of the list element. Thus, each linked list is always kept sorted by node number,

71

simplifying the search problem. The actual data kept in the list is the cost associated with

traversing the link.

//Function to find the desired node in an Adjacency List. Returns -1 if node is not in
list.
int Darting::FindNode(int node, LIST_t& AdjList)
{
int i=0;
unsigned int priority=0;
double time_entered;
for (i=0;i<AdjList.Length();i++) {
AdjList.GetElm(i,priority, time_entered);
if (priority == node) return(i);
}//for i
return(-1);
}//FindNode

Each node in the network has an entry in its adjacency tables for every other node. This
reflects the current node’s view of the network. However, because each link is bi-
directional, it is actually entered as two entries in the adjacency “matrix”. The following
functions make sure that if we change the information for one direction of the link, the

reverse direction is also updated.

//Synchronizes link b->»a with link a->b.
//If a->b does not exist, and b->a does, b->a will be deleted.
//If a->b exists and b->a doesn't, b->a will be created.
//0Otherwise the value of b->a will be made equal to a->b.
inline void Darting::SyncLink(int curr_node, int scln_a, int scln_b)
{
LIST_t& Adj_a = ADJLIST(curr_node,scln_a);
LIST t& Adj_b = ADJLIST(curr_node,scln_b);
LIST_t::QueueOrderings FIFO = (LIST_t::QueueOrderings)0;
int x=0,y=0;

x=FindNode(scln_b,Adj_a);
y=FindNode(scln_a,Adj_b);

if (x == -1 && y != -1) delete(Adj_b.Remove(y));
if (x '= -1 && y == -1) Adj_b.Enqueue(Adj_a[x],FIFO,scln_a);
if (x != -1 s&& y != -1) Adj_blyl = Adj_alx];

}//8yncLink

//Syncs all possible links at the specified node, except updates
// to our local links are not allowed. (Protocol can get confused.)
inline void Darting::SyncLinks(int curr_node, int scln_a)
{
int i;
unsigned int n;
double etime;
for (i=0;i<nodes;i++)
if (i != curr_node) SyncLink(curr_node, scln_a, i);
LIST t& my_adj = ADJLIST(curr_node,curr_node);
for (i=0;i<my_adj.Length();i++) {
my_adj.GetElm(i,n,etime);
SyncLink(curr_node, curr_node,n);

}//for i

72

The Update_Links routine is called when the trigger input from the SatLab update is
received. It then scans the new distance matrix and determines if any of our current
neighbors have gone out of range. It then finds the x closest satellites, where x is equal to
the simulation parameter Maxlinks. If any of these closest satellites also has a free slot, a link
is formed between the two satellites. To alert the rest of the routing algorithm that this is a
new link, the ordinal number of the new neighbor is increased modulo the number of

satellites in the network. (That is, nodes+1 is added to the value.)

//Function to update the link connections after a Satlab update.
//Does all nodes at once, i,dtable, htable, and neighbors are undefined
//at this point.

//Modifies Neighbors: Leaves entry intact if link is still up, changes
// to -1 if link has gone down, adds new links to free channnels if
// available. New nodes are flagged by being offset by nodes+l. (See
// below)

void Darting::update_links()

{

// NeighMatrix = Neighbors;
int i,3,k; //loop counters
int x,y; //scratch variables
float a;

for (i=0;i<nodes; i++) {(
//Deactivate any links who have gone out of range
for (j=0;j<MAXLINKS; j++) {
if (NeighMatrix[il[j] !'= -1) {
a = SATDIST(i,(NeighMatrix([i][j])):
if (a >= MAXDIST) {)
x=NeighMatrix(i][j];

// Find our 1link to Neighbor x and remove it
y=FindNode(x,ADJLIST(1,1));

//Find our record of Neighbor x's link to us and remove it

if (y != -1) delete(ADJLIST(i,1i).Remove(y));
y=FindNode(i,ADJLIST(i,x));
if (y != -1) delete(ADJLIST(i,x).Remove(y));
NeighMatrix[i][j] = -1; //Flag the link as down
}//1if a>= MAXDIST
1//71f Ni=-1
}//for j
Y//for i

for (i=0;i<nodes; i++) {
//Recover this node's working environment
for (j=0;]j<MAXLINKS;j++) neighbor(j] = NeighMatrix([i][j];

//Find closest neighbors, incuding current neighbors
int best[nodes],tempi;
float bdist[nodes], tempf;
float mind = MAXDIST;
for (j=0;j<nodes;j++) {best[j]l=-1; bdist[j]=MAXDIST;}
for (j=0;j<nodes;j++) {

a = SATDIST(i,j):

if (a<mind && a>1.0) {

x=73;

for (k=0;k<nodes;k++)

73

if (a<bdist[k]) {
tempf = bdist{k]; bdist[k] = a; a = tempf;
tempi = best[k}; best[k] = x; x = i

tempi;
Y //if
mind = a;
/71t
}//for 3

//best[] and bdist[] should now have closest nodes in order

1 //Delete any candidates that are already neighbors and re-pack list
for (j=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
if (best[j] == neighborx[k] || best[j]+nodes+l == neighbor[k])

‘ . best{j] = -1;
§ x=0; y=1;
do {
if (best{x] != -1) {x++; y++;}
else {
if (y < nodes && bestly] != -1)

tempf = bdist[x]; bdist[x] = bdist[y]; bdist[y] = tempf;
tempi = best[x]; best[x] = best[y]; best[y]l = tempi;
X++; yt++;
} else {
y++;
1//if best[y}]l != -1
1//7if best(x] != -1
} while (x < nodes && y < nodes);

//Try to £ill unused links
int flag = 0;

x = 0;
if (best[x] != -1) for (j=0;j<MAXLINKS;j++) {
if (neighbor[j] == -1) {
flag = 0;
while (x < nodes && best[x] = -1 && flag == 0) {
for (y=0;y<MAXLINKS;y++) { //see if candidate has open link

if (NeighMatrix[best[x]][y] == -1) {
//7add nodes+l to flag this as a new entry
neighbor[j] = best[xl+nodes+l;
NeighMatrix[best[x]]1([y] = i+nodes+1;
flag = 1;
y=MAXLINKS; //stop the for loop
}// if free slot
}// for y in candidate's links
X++;
1//while
}// if nljl=-1
Y//for j

//Put back changes
for (j=0;3j<MAXLINKS;j++) NeighMatrix[i][j] = neighbor[j};

}//for i
1//function update_links

One of the assumptions that the Darting protocol makes is that all satellites start
operation with a knowledge of the topology of the network. To accommodate that, the
following function, called duting the first network update, uses global network data to

determine the initial adjacency lists.

//Function Build_Initial_AdjLists

74

//Darting assumes all nodes know the initial topology of all links
//when the network is started.
void Darting::Build_TInitial_AdjLists()
{
int i,3.k;
int neigh;
LIST_t::QueuelOrderings FIFO = (LIST_t::QueueOrderings)o0;
for (i=0;i<nodes;it++) {
for (j=0;j<nodes;j++) {
for (k=0;k<MAXLINKS;;k++) {
//At start, all entries from Update_Links should be flagged as new
neigh = NeighMatrix([j](k]-nodes-1;
if (neigh > -1) {
tempint = (INTEGER_t)({SATDIST(j,neigh));
ADJLIST(i,j).Enqueue(tempint, FIFO,neigh);
}/if
1//for k
}//for 3
}//for i
}//Build initial lists

The following functions perform the processing necessary to determine the least cost

paths to each network node. The actual implementation here is a form of Dijkstra adapted

from [CoL.90].

//Function Relax - routine from CH25 of the Algorithms book.
inline void Darting::Relax(int n_curr, int n_from, int n_to)

{

int u,v,w; //variables from text

u = n_from;
v = n_to;
w = (int&)ADJLIST(n_curr,u)[FindNode(v,ADJLIST(n_curr,u))l];

if (RDist[n_curr}{v] > RDist[n_curr][u] + w) {
RDist{n_curr] [v] = RDist[n_curr]u] + w;
Pred[n_curr]}[v] = u;

1
1//Relax

//Function to do routing updates
//Implements the Dijkstra routine from [CSCE586?7?7?7?]
void Darting::rt_update(int curr_node)
{
LIST_t Q;
int i,j,listlength,u;
unsigned int v;
double t;
LIST_t::QueueOrderings fifo = (LIST_t::QueueOrderings)0;

//Initialize-Single-Source(G,s)
for (i=0;i<nodes;i++) {

RDist[curr_node]}[i] = (int)MAXDIST;
Pred[curr_nodel[i] = -1;
}//for i

RDist[curr_node] {curr_node] = 0;

//Q<-V{G]

for (i=0;i<nodes;i++) {tempint = i;
Q.Enqueue(tempint, fifo,RDist [curr_node}[i]);}

while (Q.Length()>0) {

//u<-Extract-Min(Q)
tempint=(INTEGER_t&)Q[Q.Length()-1]; u=tempint;

75

delete(Q.Remove(Q.Length()-1));

//for each vertex v E Adj{ul]
listlength = ADJLIST(curr_node,u).Length();
for(i=0;i<listlength;i++){
// Get v (remember, node number is encoded as the priority)
ADJLIST(curr_node,u) .GetElm(i,v,t);
Relax(curr_node,u,v);

//Update node v's distance entry in Q
for (j=0;7j<Q.Length();j++) {if ((INTEGER_t&)Q[j]==v) break;}
if (j < Q.Length()) {
delete(Q.Remove(j));
tempint = v;Q.Enqueue(tempint, fifo,RDist{curr_node] [v]);
1//if j<length

}//for i : v E Adjlul

}//while
}//function rt_update

The following functions implement the ping packet extension to Darting that was
necessary for correct operation of the protocol under our traffic generation distribution.

Details of this problem, and its solution can be found in Appendix C.

//This routine attempts to determine if we're in a situation where the
//incoming type 3 packet does not contain enough information to resolve

//the problem. To do that, it checks to see if our new calculated cost

//to the destination is the same as the cost passed to us in the update
//packet. If it is different then we've encountered a degenerate case

//where we've lost contact with what used to be an active path. To

//solve that, we'll generate a ping packet to retrieve information from

/s7as far down the defunct path as we can get.

void Darting::Check_Degenerate_Type3(int n_curr, int dest, int n_via, int p_cost)

{

int mypath{nodes], bad_node, pktlen;

int x=0, y=0, k=0; //scratch variables
LIST_t::QueuelOrderings FIFO = (LIST_t::QueueOrderings)O0;

//Determine “optimal” path from local data
int next_hop = -1;
int Cmin = 0;
int Cant = 0;
int j = dest;
while (j != n_curr) {
Cant = Cmin;
mypath{x++] = next_hop = j;
j = Pred[n_curr][j];

if (j t= -1) (y = FindNode(next_hop, ADJLIST(n_curr,j));}
else {y = -1;1}
if (v = -1) {
j=n_curr;
next_hop = -1;
lelse{
Cmin += (INTEGER_t&)ADJLIST(n_curr,j)([yl;
}//1if y=-1
}//while
x--; //back index up
if (next_hop == -1) return; //No path to destination,
//can't do anything else.
if (Cant == p_cost) return; //Costs match, we should be OK now.

//If we get here, costs don’t match, so we have a problem.
p

76

//Need to see where our “optimal” path differs from the path
//sent to us in the update packet, and ping the nodes in
//discrepancy.

int p = x;

VECTOR_t& payload = (*TempPacket)->scl_list;
while (p > 0) {
LIST_t& scl_list = (LIST_ ts&)payload(mypathipll;
if (scl_list.Length() == 0) { //We've got a winner.
bad_node
SatDSwdpayload_t *OutPacket;
OutPacket = new (SatDSwdpayload_t);

pktlen

= mypath[p};

(*OutPacket)->packetlength = -PACKETHEADERSIZE;

//Negative pktlen signals new pkt.

(*OutPacket)->Cost = Cmin;

(*OutPacket)->PacketType = 5; //Ping packet
(*OutPacket)->source = (*OutPacket)->from_node = n_curr;
(*OutPacket)->destination = bad_node;
(*OutPacket)->to_node = n_via;

LIST_t EmptyList;

VECTOR_t& outload = (*OutPacket)->scl_list;
outload.ChangeLengthVECTORDefaultvalue(nodes, EmptyList);
(*OutPacket) ->sequencenumber = (*TempPacket)->sequencenumber;

//Put our SCL data in
LIST_t& my_scl = (LIST_t&)payload[n_curr];
X = ADJLIST(n_curr,n_curr).Length();
if (x 1= 0) [
pktlen += x*32;
unsigned int node=0;
double time_entered;
INTEGER_t cost;
for (k=0;k<x;k++) {
cost
my_scl.Enqueue(cost, FIFO, node);
1//for k
V//if x

OutList.Enqueue(*OutPacket);
delete(OutPacket);
NextPacket_Entry().Schedule(0,trig);
//break; //Exit while loop

}//if scl_length==0

pP--;
1//while p

}//Check_Degen

= (INTEGER_t&)ADJLIST(n_curr,n_curr).GetElm(k, node, time_entered);

//This function turns the ping packet around when it has reached
//it’s destination and returns it to the sender. The packet type
to distinguish it from a new ping.

::Return_Ping()

//1s negated
void Darting
{
int x,3,k;
int source
int n_from
int n_curr
int pktlen

(*TempPacket) ->source;
(*TempPacket) ->from_node;
(*TempPacket) ->to_node;
(*TempPacket) ->packetlength;

VECTOR_t& payload = (*TempPacket)->scl_list;
LIST_t::QueueOrderings FIFO = (LIST_t::QueueOrderings)0;

(*TempPacket) ~->source = (*TempPacket)->from_node = n_curr;
(*TempPacket) ~->destination = source;

(*TempPacket) ->to_node = n_from;

(*TempPacket) ->PacketType = -5;

//Put our SCL data in
LIST t& my_scl = (LIST_ ts&)payload[n_curr];
x = my_scl.Length();

77

if (x > 0) {
pktlen -= x*32;
for (j=0;j<x;j++) delete(my_scl.Dequeue());
/it
X = ADJLIST(n_curr,n_curr).Length();
if (x = 0) {
pktlen += x*32;
unsigned int node=0;
double time_entered;
INTEGER_t cost;
for (k=0;k<x;k++) {
cost = (INTEGER_t&)ADJLIST(n_curr,n_curr).GetElm(k,node,time_entered);
my_scl.Enqueue(cost, FIFO, node);
}//for k
/it x

OutList.Enqueue(*TempPacket) ;

delete (TempPacket) ;

NextPacket_Entry().Schedule(0,trig);
}//Return_Ping

//***

// Run Functions:

// The interface for these functions is generated automatically by

// Designer when the primitive is created. The user then fills in the
// functionality.

The SyncUpdate_Run function handles all the necessaty processing when a trigger is
received by the router on the port that indicated that the satellites have moved. After calling
the wupdate_links function, and doing some additional processing on the first iteration, it

updates the nodes’ adjacency tables and returns.

inline void Darting::SyncUpdate_Run(const TRIGGER_t& SyncUpdate)
LIST_t::QueueOrderings FIFO = (LIST_t::QueueOrderings)0;

gstations = NumberofGroundStations;
nodes = NumberofSatellites;
MAXLINKS = MaxLinks;

int i,j; // loop counters
int y; // scratch variables
simtime = TNow(); segnum = 1;

CheckInit(); //See if we need to set up the matricies
//Process updates for all nodes

update_links();

if (simtime==0) Build_Initial_ AdjLists();

//Update each node’s adjacency lists
for (i=0;i<nodes;i++) {

//Recover this node's working environment
for (j=0;j<MAXLINKS;j++) neighbor[j] = NeighMatrix[i][j];

//Process link updates------=---=-------soeonoomooaaooam oo
for (j=0; j<MAXLINKS; j++) {
if (neighbor{jl == -1) (; //Link down

//update_links should take care of managing the adjacency lists
}//1if lost link

78

if (neighbor([j] < nodes+l && neighbor([j] > -1) { //Link cost change
tempint = (INTEGER_t)(SATDIST(i,neighbor[jl));
y=FindNode(neighbor[j],ADJLIST(i,i));
ADJLIST(i,i)[y]=tempint;
y=FindNode (i, ADJLIST(i,neighbor{jl));
ADJLIST(i,neighbor[j}){y] = tempint;
1//1if old link

if (neighbor([j] > nodes) { //New neighbor
neighbor[j] = neighbor[j]-nodes-1; // un-flag node
//For first iteration, new links are added in
//Build_Initial_adjLists
if (simtime > 0) {
tempint = (INTEGER_t) (SATDIST(i,neighbor([jl));
ADJLIST(i, i) .Enqueue(tempint,FIFO,neighbor{j});
ADJLIST(i,neighbor([j]).Enqueue(tempint, FIFO,i);
}//if simtime > O
}//if new link

}//7for j in MAXLINKS //-------=-r--=--c--c-=mcccmmoccowooooes oo
rt_update(i); //Update the routing tables for this node

//Re-pack node's environment back into the global variables
for (j=0;j<MAXLINKS;j++) NeighMatrix{i][j] = neighbor[jl:;

} //for all nodes (i)

//0utput old-style Satcom matrix
int nexthop;
for (i=0;i<nodes;i++) [
Pred[i}[i] = i; //Make next hop to ourself be ourself
for (j=0;j<nodes;j++) {
nexthop = Pred[i][]j];

if (nexthop != -1) while (Pred{i][nexthop] != i) nexthop = Pred[i] [nexthop];
if (nexthop == i) nexthop = j; //Correct for immediate neighbors
RouteMatrix[i*nodes+j] = nexthop;
Y//for j

1//for i

SetRoutingtablememory (RouteMatrix);

}

//***

Inbound_Update_Run is called every time a packet is passed to the routing algotithm

during normal network operations. It checks the packet type and forwards it to its

destination if it is a data packet. Update packets are handled as described in [TsM95] with

B=1. Ping packets are handled as described in Appendix C.

inline void Darting::inbound_update_Run(const SatDSwdpayload_t& inbound_update)
{

RouteMatrix = Routingtablememory;

gstations = NumberofGroundStations;

nodes = NumberofSatellites;

MAXLINKS = MaxLinks;

LIST_t: :QueuelOrderings FIFO = (LIST_t::QueueOrderings)0;

TempPacket = (SatDSwdpayload t*)inbound_update.CopyArc();

int n_from, n_curr, p_cost, pkttype, pktlen, update_flag;

79

int 1,3,k,x,y; // loop counters, etc
simtime = TNow();

int g = (*TempPacket)->sequencenumber;
int d_dstn = (*TempPacket)->destination;
int s_srce = (*TempPacket)->source;
pkttype = (*TempPacket)->PacketType;
pktlen = (*TempPacket)->packetlength;

//If noone has reset the packetlength, we need to take care of it.
if (pktlen < 0) {pktlen = -pktlen; (*TempPacket)->packetlength = pktlen;}

//Kludge for Ping packets, we'll put it back later

if (pkttype == || pkttype == -5) pkttype = 2;

if (pkttype > 3 || d_dstn >= nodes || (*TempPacket)->source >= nodes)
{ //Drop any unknown type or type 4 packets that make it back here
delete(TempPacket) ;
return;

1
VECTOR_t& payload = (*TempPacket)->scl_list;

//Fill in routing overhead fields for new packets

if (pkttype == 1) {
(*TempPacket)->Cost = 0;
LIST_t EmptyList;
payload.ChangeLengthVECTORDefaultvValue(nodes, EmptyList);
(*TempPacket) ->from_node = (*TempPacket)->source;
(*TempPacket) ->to_node = (*TempPacket)->source;
(*TempPacket) ->sequencenumber = seqnum++;

}

n_from = (*TempPacket)->from_node;

n_curr = (*TempPacket)->to_node;
p._cost = (*TempPacket)->Cost;
if ((*TempPacket)->source == (*TempPacket)->destination) {

//Sending data to ourself, drop the packet
(*TempPacket) ->PacketType = 4;
OutList.Enqueue(*TempPacket);
delete(TempPacket) ;
NextPacket_Entry().Schedule(0,trig);
return;

}

//Step 0 - Go through steps 3-5 with i=0 if this is a new message

//Step 1 - Incorperate p_status into local cost matix
update_flag = 0;
if (pkttype != 1) {
for (j=0;j<nodes;j++) [
LIST_t& scl_list = (LIST_t&)payload(j];
if (j !'= n_curr && scl_list.Length() > 0) (
if (scl_list == ADJLIST(n_curr,j)) {
//do nothing
Jelsel|
update_flag = 1;
x = ADJLIST(n_curr,j).Length();
for (k=0;k<x;k++) delete (ADJLIST(n_curr,i).Dequeue());
x = scl_list.Length();
unsigned int node=0;
double time_entered;
INTEGER_t cost;
for (k=0;k<x;k++) {
cost = (INTEGER_t&)scl_list.GetElm(k,node,time_entered);
ADJLIST(n_curr, j) .Enqueue(cost, FIFO, node};
}//for k

SyncLinks(n_curr,j);

80

}//if scl_list==ADJLIST
}//if scl_list.Length > 0
}//for j
if (update_flag == 1) rt_update(n_curr);
1// if not new packet

if (pkttype == 3) Check_Degenerate_Type3(n_curr,s_srce,n_from,p_cost);

//Handle Ping packets

pkttype = (*TempPacket)->PacketType; //Restore correct value

if (pkttype == 5 && (*TempPacket)->to_node == (*TempPacket)->destination) {
Return_Ping();
return;

}//ping packet

//Step 2 - If this is the destination, give data to user and stop
if ((*TempPacket)->destination == n_curr) {

(*TempPacket) ->PacketType = 4;

OutList.Enqueue(*TempPacket);

delete(TempPacket);

NextPacket_Entxry().Schedule(0,trig);

return;

]

//Recover this node's working environment
for (3=0;j<MAXLINKS;j++) neighbor[j] = NeighMatrix[n_curr][j];
int link =-1;
for (k=0;k<MAXLINKS;k++) { //What link is source on?
if (neighbor{k] == n_from) link=k;
}//for k

//Step 3 - Determine optimal path
int next_hop = -1;
int Cmin = 0;
int Cant = 0;
if (pkttype 1= 3) {
j = d_dstn;
while (j != n_curr) {
Cant = Cmin;
next_hop = j;
j = Pred[n_curr][jl;

if (3 != -1) {y = FindNode(next_hop, ADJLIST(n_curr,j)};]}
else {y = -1;1
if (y == -1) {
j=n_curr;
next_hop = -1;
lelsel
Cmin += (INTEGER_t&)ADJLIST(n_curr,i)[yl;
1/7/if y=-1
}//while

1//1f not control packet

//Step 4 - Assemble outgong data message
if (pkttype != 3 && next_hop != -1) {
(*TempPacket)->from_node = n_curr;
(*TempPacket)->to_node = next_hop;
(*TempPacket)->Cost = Cant;
if (pkttype == 1) (*TempPacket)->PacketType = 2;
LIST_t& scl_list = (LIST_t&)payload[n_curr];
x = scl_list.Length();
if (x> 0) {
pktlen -= x*32;
for (j=0;j<x;j++) delete(scl_list.Dequeue());
Y//if
X = ADJLIST(n_curr,n_curr).Length();
pktlen += x*32;
unsigned int node=0;
double time_entered;
INTEGER_t cost;

81

for (k=0;k<x;k++) {
cost = (INTEGER_t&)ADJLIST(n_curr,n_curr).GetElm(k,node,time_entered);
scl_list.Enqueue(cost, FIFO, node);
}//for k

(*TempPacket)->packetlength = pktlen;

//Step 5 - Transmit packet to next node
OutList .Enqueue(*TempPacket) ;
delete(TempPacket);
NextPacket_Entry().Schedule(0,trig);

lelse{ //No path to destination, or control packet, drop the packet.
(*TempPacket) ->PacketType = 4;
OutList.Enqueue(*TempPacket);
delete(TempPacket) ;
NextPacket_Entry().Schedule(0,trig);
return;
1//1if pkttype !=3 && nexthop != 1

//Step 6 - Check if predecessor update required
if (Cmin != p_cost && (pkttype == || pkttype == 5)) (
TempPacket = (SatDSwdpayload_t*)inbound_update.CopyArc();
VECTOR_t& payload = (*TempPacket)->scl_list;
(*TempPacket)->Cost = Cmin;
(*TempPacket)->PacketType = 3;
(*TempPacket)->source = d_dstn;
(*TempPacket)->from_node = n_curr;
(*TempPacket)->destination = (*TempPacket)->to_node = n_from;
(*TempPacket) ->sequencenumber = - (*TempPacket)->sequencenumber;
pktlen = PACKETHEADERSIZE;
for (k=0;k<nodes;k++) {
LIST_t& scl_list = (LIST_t&)payloadl[kl];
x = scl_list.Length();
if (x > 0) for (3=0;Jj<x;j++) delete(scl_list.Dequeue());
1//for k
j=d_dstn;
while (j != n_curr) {
LIST t& scl_list = (LIST_t&)payload[jl;
X = ADJLIST(n_curr,j).Length();
pktlen += x*32;
unsigned int node=0;
double time_entered;
INTEGER_t cost;
for (k=0;k<x;k++) {
cost = (INTEGER_t&)ADJLIST(n_curr,j).GetElm(k,node,time_entered);
scl_list.Enqueue(cost,FIFO, node);

l//for k
j = Pred[n_curr][]j];
if (3 == -1) { //if j=-1 then there is no path to the destination
j = n_curr; //exit from the loop
Y// if 3
}//while

//Put our SCL data in
x = ADJLIST(n_curr,n_curr).Length(});
if (x 1= 0) {
pktlen += x*32;
LIST t& scl_list = (LIST_t&)payload[n_curr];
unsigned int node=0;
double time_entered;
INTEGER_t cost;
for (k=0;k<x;k++) {
cost = (INTEGER_t&)ADJLIST(n_curr,n_curr).GetElm(k,node,time_entered);
scl_list.Enqueue(cost, FIFO, node);
}//for k
1//1if x

//Negative packetlength signals new packet to external handlers

(*TempPacket)->packetlength = -abs(pktlen);
OutList . Enqueue (*TempPacket) ;

82

delete(TempPacket);
NextPacket_Entry().Schedule(0,trig);
1//if not initial packet or control packet, and predecessor update is required

//Re-pack node's environment back into the global variables
for (j=0;j<MAXLINKS; j++) NeighMatrix[n_curr]{j] = neighbori{j];

//0Output old-style Satcom matrix
int nexthop;
Pred[n_curr] [n_curr] = n_curr; //Make next hop to ourself be ourself
for (3=0;j<nodes;j++) {
nexthop = Predin_curr]}[jl;
if (nexthop != -1) while (Pred[n_curr][nexthop] != n_curr) nexthop =
Pred[n_curr] [nexthop];
//Correct for immediate neighbors

if (nexthop == n_curr) nexthop = j;
RouteMatrix[n_curr*nodes+j] = nexthop;
}//for j

SetRoutingtablememory(RouteMatrix);

}

//***
// Asynchronous Functions:

This NextPacket Run outputs any packets in the output queue. When each packet is
enqueued, a trigger is placed on the event list that activates this function.
inline void Darting::NextPacket_Run(const TRIGGER_t& NextPacket)
[.
SatDSwdpayload_t *OutPacket;
int i1 = OutlList.Length();
if (i>0) {
OutPacket = (SatDSwdpayload_t *)OutList.Dequeue();
outbound_update(*OutPacket);

delete(OutPacket);
Y//7if i>1

/***% User Code Above Here *xx*/

B.2 Extended Bellman Ford
Much of the interfacing code for Bellman Ford is identical to the Darting code, with the

exception that Bellman Ford does not need access to the actual data packets in the network.
It therefore has no conception of packet types. Any packet it receives is considered to be an

update packet, and any packet it transmits is likewise an update packet.

The algorithm itself is adapted from Cheng, et. al [ChR89]. The portions of the code

that are identical to Darting are presented with minimal, if any, additional description.

83

o External Ports:

Input:

SyncUpdate is of type TRIGGER: Description: Triggers bulk link cost updates using the
latest data from SatLab. The primitive will iterate through every node and generate
any necessary updates.

inbound_update is of type Sat DS w/ payload: Description: Accepts input Sat DS w/
payload in which the payload is an asynchronous input vector used to accept routing
update messages from the network. Each "element” of the vector is a triple, (j, Dy;
Hy;). Therefore, the first three numbers in the vector correspond to the first
"element", numbers 4-6 correspond to the second element, etc. The C++ code
expects the numbers to be formatted in this manner.

Qutput:

outhound_update is of type Sat DS w/ payload: Description: Outputs Sat DS w/ payload
packets with appropriate topology update messages based upon the input changes.
One input may result in many output packets.

rontematrix is of type INT-VECTOR: Description: Outputs a Satcom_dbs style global
route table based upon any input changes. Seeing whereas the primitive will update
the global memory anyway, though, this output is faitly useless, and is only included
for backward compatibility with Designer.

o External Arguments:
(M) "Routing table memory" is of type "INT-VECTOR"
(M) "Elevation Table Memory" is of type "REAL-VECTOR"
(M) "Distance table memory" is of type "REAL-VECTOR"
(M) "Number of Satellites” is of type "INTEGER"
M) "Number of Mobiles" is of type "INTEGER"
M) "Mobile Latitude Table Memory" is of type "REAL-VECTOR"
(M) "Mobile Altitude Table Memory" is of type "REAL-VECTOR"
M) "Number of GroundStations" is of type "INTEGER"
(P) "MaxLinks" is of type "INTEGER"

o Internal Arguments:
(M) "RouteDistance" is of type "REAL-VECTOR"
Description: Holds each node's estimated distance to each destination.
Initialization Value: Vector length: (1) Initial Value: 0.0
M) "NodeMemory" is of type "VECTOR"

84

Description: Stores routing state from iteration to iteration.

Initialization Value: Vector length: (1) Initial Value: Uninitialized
M) "OutputQueue" is of type "VECTOR"

Description: Holds packets awaiting output from each node.

Initialization Value: Vector length: (1) Initial Value: Uninitialized
(E) "NextPacket" is of type "EVENT-LIST"

Initialization Value: Uninitialized
Description: Used to schedule a simulation event to output packets from
OutputQueue.

(M) "Neighbors" is of type "INT-VECTOR"
Description: Holds the state of the network links.
Initialization Value: Vector length: (1) Initial Value: 0

/*
* Module Name : exBF
* Template Created By : 3.0
* Author: rjanoso
* Last Modification Date: 30-Jul-1996 17:16:36
* Template Date: 30-Jul-1996 17:16:46
*/

/**** Tncludes and Defines Below Here *#***/

#include <LIST.hh>

#define SATDIST(X,Y) Distancetablememory[gstations*(gstations+nodes) +
X*(gstations+nodes)+(gstations+Y)]

#define PACKETHEADERSIZE 256

/**** Includes and Defines Above Here ***%/

The data structures used by Cheng have been divided into two matrices: dtable, which
holds the distances to each node in the network through each of the outgoing links, and
htable, which holds the header (predecessor) node for each destination along the path out the
respective link. The rutes matrix holds the optimal paths determined by the algotithm for
each node. Each entry is a triple, consisting of outgoing link, total distance, and

header(predecessor) node along the path.

/**** Instance Definitions Below Here **+%%/
void Init();
int in_path(int n_from, int 1_via, int n_to);
int dtable_min(int row);
void rt_update(int curr_node);
void route_all();
void update_links();

INTVECTOR_t tempiv;
TRIGGER_t trig;

VECTOR_t nodemem;

85

LIST_t OutList;

SatDsSwdpayload_t *TempPacket;

INTVECTOR_t RouteMatrix, NeighMatrix, Vi, payload;
REALVECTOR_t RDist;

double simtime, iter_time;

int gstations, seqnum;

int nodes;

int MAXLINKS;

int **htable;

int **routes;

float **dtable;

int *neighbor;

const float MAXDIST = 1000000000.0;

int initflag;

/**** TInstance Definitions Above Here **x*/

/**** User Constructor Code Below Here *+*%/
initflag = -1;

iter_time
DEBUGTIME

1000000;
1000000;

/**** User Constructor Code Above Here **x*/

/**** User Code Below Here *#**x%/

void exBF: :Init()

{

}

EVENTLIST_t Temp = NextPacket;
Temp . Extend (NextPacket_Entry());
SetNextPacket (Temp);

The in_path function is used by Cheng’s algotithm to determine if the optimal path to a

specified node goes out the indicated link.

//Function to determine if my path to n_to goes out through 1_via
// n_'s are node numbers, 1_'s are indexed into the neighbor/htable columns.
int exBF::in_path(int n_from, int 1_via, int n_to)

{

int h;

if (n_to > nodes || n_to < 0 || 1_via < 0 || 1l_via > MAXLINKS) return 0;
//routes[]1[2] is the head node along our best path to n_to.

h = routes[n_to][2];

if (h < 0 || h > nodes) return 0;

if (h == n_from) return 0;

if (h == neighbor[l_via]) return 1;

else return in_path(n_from,1_via, h);

}//function in_path

Dtable_min is used by the routing algorithm when determining what outgoing link has

the shortest destination to the desired destination.

//Function to determine the minimum entry in a dtable row
//returns an integer index to the minimum entry
int exBF::dtable_min(int row)

{

int x; //Loop Counters

86

int minnode = -1;

float mindist = MAXDIST;

for (x=0;x<MAXLINKS;x++) {
if (dtable{row]{x] < (int)mindist)
minnode = x;
mindist = dtablelrow] [x];
Y//if

}//for

return(minnode);

}//function dtable_min

Rt_update performs the actual routing function. Operation is as described by Cheng in

[ChR89]. This basically consists of checking each row in dable and recording the link with

the smallest entry as the preferred output link for packets to that destination. The notable

exception to this is that no source node will advertise a path to a neighbor when that
| neighbor lies along the path to the destination node. This prevents several nasty looping

effects present in the original Bellman-Ford algorithm.

//Function to do routing updates
// Selects perferred neighbors from minimum of dtable entries for that
// node's row as long as each node along the path to the desination has
// it's shortest path also passing through the candidate neighbor.
1 // ~-- Destroys routes, outvect
void exBF: :rt_update(int curr_node)
3 {
1 //Initialize variables:
f const int UNMARKED = -1;
const int UNDETERMINED = MAXLINKS+2;
float mind;
int filagl=0,flag2=0,flag3=0;
int b,c,p,x,mincol; //Loop Counters, misc indicies
i int path[nodes+1}; //holds reconstructed paths from htable

‘ for (x=0;x<nodes;x++) {routes[x][0] = UNMARKED;
| routes[x}[1] = (int)MAXDIST;
i routes [x] [2] = UNMARKED; }

| //Fix up the entry to ourself

routes [curr_node] [0] MAXLINKS+1; //No outgoing link to ourself
routes [curr_node] [1] 0; //Zero cost to transmit
routes [curr_node] [2] UNMARKED ; //path to ourself has no header

oo

//Re-calculate routing data for each node:
for (x=0;x<nodes;x++) {(

b = dtable_min(x);

if (b == -1]| dtable([x][b] == (int)MAXDIST) {
//Noone we know of has a path to that node node
if (x != curr_node) routes[x][0] = UNDETERMINED;

} else {

//Reconstruct path from htable entries
p = -1; ¢ = x; flagl = flag2 = flag3 = 0;

if (c t= curr_node) do {
c = htable[c] [b];
if (c !'= -1) {

path[++p] = c;

mincol = dtable min(c); //Returns -1 if no path

87

if (mincol == -1) {mind = MAXDIST;}
else {mind = dtable[c]{mincol];}

flagl = (dtable(c][b] > mind && c != curr_node);
flag2 = (htable[c][b] == curr_node);
flag3 = (routesfc][0] != UNMARKED);

lelse{

flagl = (1 > 0); //Set flagl true
1//7if ¢ 1= -1

} while (!flagl && !flag2 && !flag3);

if (flagl |{ routes[c][0] == UNDETERMINED) {
routes[x]} [0] = UNDETERMINED;
routes[x][1] = (int)MAXDIST;

} else {

routes[x]{0] b; //Preferred Neighbor

routes[x][1] (int)dtable[x] [b]; //Distance to x via b
routes(x][2] = htable[x][b]; //Head of path to x via b

1//if
}//71if path exists

1//for x (all nodes)

//Store the updated tables in the output vector
Vi.ChangeLength(nodes*3,-1);
for (x=0;x<nodes;x++) {

Vi[x*3+0] = x; //node # «
Vi[x*3+1] = routes[x]([1l]; //distance to node
Vi[x*3+2] = routes[x]([2]; //head node of path
}//for x

}//function rt_update

Due to the huge number of update packets that exBF generated when required to
converge to a global topology from a completely blank slate at network startup, route_all
was added to cheat and synchronize all nodes with global information during the first
iteration. 'This modification saves several hours of simulation time, and as the first 60

seconds of simulation data are thrown out anyway, does not affect the comparison at all.

//Function to synchronize all routing tables to global info
// Uses the Dijkstra algorithm from Darting.
void exBF: :route_all()
{
LIST_t Q;
LIST_t::QueueOrderings FIFO = (LIST_t::QueueOrderings)0;
INTEGER_t int_t;
int i,3,u,v,w,curr_node;
int **Pred, **RDist;

nodemem = NodeMemory;
NeighMatrix = Neighbors;

Pred = new int*[nodes];
if (Pred == 0) {cerr << "Qut of Memory!";}
for (i=0;i<nodes;i++) {

Pred[i] = new int[nodes];

38

if (Pred[i] == 0) {cerr << "Out of Memory!";}
1//for i

RDist = new int*[nodes];
if (RDist == 0) {cerr << "Out of Memory!";}
for (i=0;i<nodes;i++) {
RDist[i] = new int[nodes];
if (RDist[i] == 0) {cerr << "Out of Memory!";}

Y//for 1

//First build global tables
for(curr_node=0; curr_node<nodes;curr_node++) {

//Init Single Source Graph(G,s)
for (i=0;i<nodes;i++) {

RDist[curr_node][i] = (int)MAXDIST;
Pred[curr_node][i] = -1;
1//for i

RDist[curr_node] [curr_node} = 0;

Pred[curr_node] [curr_node] = curr_node;

//7Q<-v[G]

for (i=0;i<nodes;it++) {

int_ t = i;
Q.Enqueue(int_t,FIFO,RDist[curx_node] [i]);}

while (Q.Length()>0) {

//u<~-Extract-Min(Q)
int_t=(INTEGER_t&)Q[Q.Length()-1]; u=int_t;
delete(Q.Remove(Q.Length()-1));

//for each vertex v E Adj{u]
for (i=0;i<MAXLINKS;i++) {
v = NeighMatrix{u*MAXLINKS+i];
if (v > nodes) {v = v-nodes-1; NeighMatrix[u*MAXLINKS+i] = v;}
if (v = -1) {
//Relax(u,v,w);
w = (int)SATDIST(u,v);
if (RDist[curr_node){v] > RDist[curr_node][u] + w) {
RDist{curr_node] [v] = RDist[curr_node] [u] + w;
Pred[curr_node] [v] = u;
1 .
//Update node v's distance entry in Q
for (j=0;j<Q.Length();j++) (if ((INTEGER_t&)Q[jl==v) break;]}
if (j < Q.Length()) {
delete(Q.Remove(}));
int_t = v;Q.Enqueue(int_t,FIFO,RDist[curr_nodelv]):
1//if j<length
1//if v 1= -1
1//for each vertex v E Adj{u]

}//while

1//for curr_node

//Now fill in each node's local memory with the global info
for(curr_node=0; curr_node<nodes; curr_nodet++)

INTVECTOR_t& iv = (INTVECTOR_t&)nodemem[curr_node];

int n,d_cn;

for (i=0;i<MAXLINKS;i++) [
n = NeighMatrix[curr_node*MAXLINKS+i];
if (n > nodes) {(
n = n-nodes-1;
NeighMatrix{curr_node*MAXLINKS+i] = n;}

-1y {
SATDIST(curr_node,n);

if (n !
d_cn

89

Y

/7

//Set up tables for in_path
int link = -1;
for (j=0;j<MAXLINKS;j++) {
neighbor[j] = NeighMatrix[n*MAXLINKS+j];

if (neighbor{j] == curr_node) link = 3
}// for j
if (link == -1) {

printf("Error, no reciprocal link while cheating! curr_node=%i,
n=%i\n",curr_node,n);
TerminateSim();}
for (j=0;j<nodes;j++) routesf[j][2] = Pred[nl[j];

//Now fill in dtable and htable.
//Note: nodemem[j,i] = dtable(j][i]
//and nodemem[j+nodes,i] = htable([j]([i}]

for (j=0;j<nodes;j++) |

if (in_path(n,link,3j)) {
iv[j*MAXLINKS+i] = (INTEGER_t)((int)MAXDIST);
iv[nodes*MAXLINKS + j*MAXLINKS+i] = (INTEGER_t)(-1);
lelsef{
iv[j*MAXLINKS+i] = (INTEGER_t)(RDist[n][j] + d_cn);
if (iv[j*MAXLINKS+i} > (int)MAXDIST)

iv{j*MAXLINKS+i] = (int)MAXDIST;
iv{nodes*MAXLINKS + j*MAXLINKS+i] = (INTEGER_t)Pred([n]) [j];
}//if in-path
}//for j = destination node

//Never go out a link to get to ourself
iv[curr_node*MAXLINKS+i] = (int)MAXDIST;

//head node to neighbors is ourself
iv[nodes*MAXLINKS + n*MAXLINKS+i] = (INTEGER_t)curr_nocde;

}//if ni= -1
1//for i = via link
}//for curr_node

SetNodeMemory (nodemem) ;
SetNeighbors(NeighMatrix);

//Delete the dynamically allocated memory
for (i=0;i<nodes;i++) {

delete(] RDist[i]:

deletel] Pred{i]:

17/
/route_all

Function to update the link connections after a Satlab update.
Does all nodes at once, i,dtable,htable, and neighbors are undefined
at this point. Modifies Neighbors: Leaves entry intact if link is

// still up, changes to -1 if link has gone down, adds new links to free
// channnels if available. New nodes are flagged by being offset by

// nodes+l.

void exBF: :update_links()

{

NeighMatrix = Neighbors;

int i,3j,k; //loop counters
int x,y; //scratch variables
float a;

for (i=0;i<nodes; i++) {
//Deactivate any links who have gone out of range
for (j=0;j<MAXLINKS;Jj++) {

if (NeighMatrix[i*MAXLINKS+j] != -1) [
a = SATDIST(i,NeighMatrix[i*MAXLINKS+j]);
if (a >= MAXDIST) NeighMatrix[i*MAXLINKS+j] = -1;

90

}//if
}//for j
}//for i

for (i=0;i<nodes; i++) {
//Recover this node's working environment
for (j=0;3j<MAXLINKS;j++) neighbor([j] = NeighMatrix[i*MAXLINKS+j];

//Find closest maxlinks neighbors, incuding current neighbors
int best{nodes],tempi;
float bdist([nodes], tempf;
float mind = MAXDIST;
for (3=0;j<nodes;j++) {best[j]=-1; bdist[j]=MAXDIST;}
for (j=0;j<nodes;j++) {
a = SATDIST(i,j):
if (a<mind && a>1.0) {
x=J;
for (k=0;k<nodes;k++)
if (a<bdist[k]) {
tempf = bdist([k]; bdist[k] = a; a = tempf;
tempi = best[k]; best[k] = x; x = tempi;

Y //7if
mind = a;
1//if
}//for j
// -- best[] and bdist[] should now have closest nodes

//Delete any candidates that are already neighbors and re-pack list
for (j=0;j<nodes; j++)
for (k=0; k<MAXLINKS;k++)

if (best[j] == neighbor{k] || best[jl+nodes+l == neighbor[k])
best([j] = -1;

x=0; y=1;

do {
if (best[x] != -1) {(x++; yt++;}
else {

if (y < nodes && best(y] (= -1) {

tempf = bdist[x]; bdist([x] = bdist{y]; bdist{y] = tempf;
tempi = best[x]; best[x] = best[y]; best([y] = tempi;
X++; y++;
} else [
v+
1//1if best[y]l != -1
1//if best[x] != -1
} while (x < nodes && y < nodes);

//Try to f£fill unused links
int flag = 0;

x = 0;
if (best[x] != -1) for (Jj=0;j<MAXLINKS;j++) [
if (neighbor([j] == -1) {
flag = 0;
while (x < nodes && best([x] != -1 && flag == 0) {
for (y=0;y<MAXLINKS;y++) { //see if candidate has open link

if (NeighMatrix[best[x]*MAXLINKS+y] == -1) {
neighbor{j] = best[x]+nodes+1;
NeighMatrix[best [x]*MAXLINKS+y] = i+nodes+l;
flag = 1;
y=MAXLINKS; //stop the for loop
}// if free slot
}// for y in candidate's links
X++;
}//while
/7 if n[jl=-1
Y//for j

//Put back changes
for (j=0;3j<MAXLINKS;j++) NeighMatrix[i*MAXLINKS+j] = neighbor([jl;

91

1//for i
SetNeighbors (NeighMatrix);

}//function update_links

//***
// Run Functions:

SyncUpdate_Run differs slightly from Darting in that it must create update packets to
begin the convergence iteration. It cycles through each node, updates its out going links,

and informs its neighbors of any relevant changes.

inline void exBF::SyncUpdate_Run(const TRIGGER_t& SyncUpdate)
{

nodemem = NodeMemory;

RouteMatrix = Routingtablememory;

NeighMatrix = Neighbors;

RDist = RouteDistance;

gstations = NumberofGroundstations:
nodes = NumberofSatellites;
MAXLINKS = MaxLinks;

int i,3,k; // loop counters
simtime = TNow(); seqnum = 1;

//Initialize global variables if needed
if (initflag == -1) [
htable = new int*[nodes];
if (htable == 0) {cerr << "Out of Memory!";}
for (i=0;i<nodes;it++) {
htable[i] = new int[MAXLINKS];
if (htable{i] == 0) {cerr << "Out of Memory!";}
}//for i

dtable = new float*[nodes];

if (dtable == 0) {cerr << "Out of Memory!";}

for (i=0;i<nodes;i++) {
dtablef{i] = new float[MAXLINKS]:;
if (dtable[i] == 0) {cerr << "Out of Memory!";}
l//for i

routes = new int*(nodes];

if (routes == 0) {cerr << "Out of Memory!";}

for (i=0;i<nodes;i++) {
routes[i] = new int([3];
if (routes[i] == 0) {cerr << "Out of Memory!";}
}//for i

neighbor = new int[MAXLINKS]:;
if (neighbor == 0) {cerr << "Out of Memory!";}

initflag = 0;
}//if initflag

if (RDist.Length() == 1) RDist.ChangeLength(nodes*nodes, MAXDIST);
if (RouteMatrix.Length() == 1) RouteMatrix.ChangeLength(nodes*nodes,-1);
if (NeighMatrix.Length() == 1) {

NeighMatrix{0] = -1;
NeighMatrix.ChangeLength(nodes*MAXLINKS, -1);
SetNeighbors (NeighMatrix);

92

}

if (nodemem.Length() == 1) {

nodemem. ChangeLength (nodes) ;
tempiv.ChangeLength(2*nodes*MAXLINKS, (int)MAXDIST);
tempiv[0] = (int)MAXDIST;

for (j=nodes*MAXLINKS; j<2*nodes*MAXLINKS;j++) tempiv[jl = -1;
for (j=0;j<nodes;j++) nodemem{j] = tempiv;

SetNodeMemory (nodemem) ;

}

//Process updates for all nodes

update_links();

if (simtime == 0) {route_all(); nodemem = NodeMemory; }
NeighMatrix = Neighbors;

for (i=0;i<nodes;i++) {

//Recover dtable and htable from NodeMemory
tempiv = (INTVECTOR_t&)nodemem[i};
for (j=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
dtable[j][k] = tempiv[j*MAXLINKS+k];
for (j=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
htable[j][k] = tempiv[nodes*MAXLINKS + j*MAXLINKS+k};
for (k=0;k<MAXLINKS;k++)
htable[i}[k] = i;

//Recover this node's working environment
for (3=0;j<MAXLINKS;j++) neighbor[j] = NeighMatrix[i*MAXLINKS+j];

J/tER Kk Rk R Rk Kk

//Update Neighbors -- Somewhat like Garcia (4)
float newd, oldd, deltad;

if (simtime > 0) { //We're cheating first time through
for (j=0; j<MAXLINKS; j++) {

//Check for link down

if (neighbor([j] == -1)
for (k=0;k<nodes;k++) (dtable[k][j] = MAXDIST; htable[k][j] = -1;}
htable[i][j] = i;
}//if lost 1link

//Check if new cost on existing link
if (neighbor[jl < nodes+l && neighbor[j] > -~-1) {
newd = SATDIST(i,neighbor([jl);
oldd = RDist[i*nodes+neighbor[j]];
deltad = newd - oldd;
for (k=0;k<nodes;k++)
if (dtable[k][j}] < MAXDIST) dtablel[k][j]l=dtable[k][j] + deltad;
dtable{neighbor[j]][j] = newd; //Kludge
}//if old link

//Check if a new link has been established
if (neighbor{j] > nodes) {
neighbor[j] = neighbor[j}-nodes-1; // un-flag node
newd = SATDIST(i,neighboriijl);
for (k=0;k<nodes;k++) [dtablef{k][j] = MAXDIST; htable[k][j] = -1;}
dtable[neighbor[j]][{j] = newd;
htable[neighbor([j]]{j] = i;
htable[i]l([j] = i; //Head node to ourself is ourself.
1//if new link

}//for j in MAXLINKS

Y/t

//+*************

//Update routing table from dtable -- Garcia (2)
// This is an unconditional update because this routine handles

93

// Satlab(global) updates, so the k=Pij condition in Garcia's
// algorithm will always hold.
rt_update(i);

//8end updates to neighbors -- Garcia (3)

int b, t;
INTVECTOR_t outvect; outvect.Changelength(nodes*3,-1);

for (b=0;b<MAXLINKS;b++) {
if (neighbor(b] != -1) {
for (t=0;t<nodes;t++) {

if (in_path(i,b,vi{t*3]1)) {

outvect [t*3+0] = Vi{t*3+0]; //node
outvect [t*3+1] = (int)MAXDIST; //if in path send infinity
outvect [t*3+2] = -1; //and invalid head node
} else {
outvect [t*3+0] = Vi[t*3+0]; //node
outvect [t*3+1] = Vi[t*3+1]; //distance
outvect [t*3+2] = Vi[t*3+2]; //head node

1//7if in_path
}//for t -- all nodes

TempPacket = new (SatDSwdpayload_t);
(*TempPacket)->source = i;

(*TempPacket) ->sequencenumber = seqgnum++;
(*TempPacket)->Payload = outvect;
(*TempPacket)->packetlength = outvect.Length()*32 + PACKETHEADERSIZE;
(*TempPacket)->destination = neighbor([b];
OutList.Enqueue(*TempPacket);
delete(TempPacket);
NextPacket_Entry().Schedule(0,trig);
}//1if neighbor([b} (= -1

}//for b -- all neighbors

//Re-pack node's environment back into the global variables
for (j=0;j<nodes;j++)
for (k=0;k<MAXLINKS;Kk++)
tempiv[j*MAXLINKS+k] = (int)dtable[j][k];
for (j3=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
tempiv[nodes*MAXLINKS + j*MAXLINKS+k] = htable[j][k];
nodemem[i] = tempiv;
SetNodeMemory (nodemen) ;
for (j=0;j<MAXLINKS;j++) NeighMatrix[i*MAXLINKS+3j] = neighbor([j];

SetNeighbors(NeighMatrix);

//Update the Satcom-style RouteMatrix (matrix of next-hops)
for (j=0;j<nodes;j++) {
if (1 t=3) {
if (routes[3][0) !'= MAXLINKS+2 && routes[§][0] != -1) {
//If the destination is flagged, we don't have a path yet, or a
// link has failed.
RouteMatrix[i*nodes+j] = neighbor{routes[j]([0]];
} else {
RouteMatrix[i*nodes+j] = -1;
1//if destination is not flagged

} else {
RouteMatrix[i*nodes+jl=1i;
//7if (1 1= 3)

RDist[i*nodes+j] = routes[j]l([1];
} //for j

SetRoutingtablememory (RouteMatrix);
SetRouteDistance(RDist);

94

} //for all nodes (i)

//0utput old-style Satcom matrix
routematrix(RouteMatrix);

}//SyncUpdate_Run

//***

Inbound_update_run processes incoming updates from our neighbors. The incoming
data is merged into our local tables. The algorithm then determines if this new data has
made any significant changes, and if so, sends an update out to all of the current node’s

neighbors.

inline void exBF::inbound_update_Run(const SatDSwdpayload_t& inbound_update)
{

nodemem = NodeMemory;

RouteMatrix = Routingtablememory;

NeighMatrix = Neighbors;

RDist = RouteDistance;

gstations = NumberofGroundStations;
nodes = NumberofSatellites;
MAXLINKS = MaxLinks;

TempPacket = (SatDSwdpayload_t*)inbound_update.CopyArc():

int h,i,qg;
int j,k; // loop counters
simtime = TNow();

(*TempPacket)->destination;
(*TempPacket) ->source;
(*TempPacket) ->sequencenumber;

i
h
9

oo

//Recover dtable from NodeMemory
tempiv = (INTVECTOR_t&)ncdemem[i];
for (j=0;7j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
dtable[j}[k] = tempiv[j*MAXLINKS+k];
for (3=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
htable[j] [k] = tempiv[nodes*MAXLINKS + j*MAXLINKS+k];
for (k=0;k<MAXLINKS;k++)
htable[i][k] = i;

//Recover this node's working environment
for (j=0;Jj<MAXLINKS;j++) neighbor[j] = NeighMatrix[i*MAXLINKS+j];

int link =-1;

for (k=0;k<MAXLINKS;k++) { //What link is h on?
if (neighbor[k] == h) link=k;
}//for k

//Input changes to dtable -- (1) from Garcia's algorithm

if (link > -1) { //Only do updates for recognized neighbors
payload = (*TempPacket)->Payload;
int dest, dist, d_ih;
int length=payload.Length();
d_ih = (int)SATDIST(i,h); //Assumes path to h is direct
Vi.ChangeLength(1l,-1);

95

for (j=0;j<length;j=j+3) {

dest=payload{j};

dist=payload(j+1];

if (dest != -1 && dest != i) {
dtable[dest][1link] = d_ih + dist;
htable[dest]{1link] = payload[j+2];
if (dtable{dest](link] > (int)MAXDIST)

dtablefdest] [link] = (int)MAXDIST;

Y//if

1//for j -- all pairs in input

htable[h] [link] = i; //Head of path to neighbor is current node.
1// if recognized neighbor

//Update routing table from dtable -- Garcia (2)
int b;
int flag = 0;
//Determine if the new data has changed our preferred neighbor
for (j=0;j<nodes;j++) {
b = dtable_min(j);

if (b < 0) b=0; //If b=-1, there is no path to dest, use any link
if (dtable[j][b]l != RDist[i*nodes+j] && j != i) {

flag = -1;

break;

}

Y//for j

if (fiag == -1) [
rt_update(i);

} else {
Vi.ChangeLength(1,-1);

/it

//8end updates to neighbors -- Garcia (3)
int t;
INTVECTOR_t outvect; outvect.ChangeLength(nodes*3,-1);

if (Vi.Length() > 1) for (b=0;b<MAXLINKS;b++) {
if (neighbor{b] != -1) {
for (t=0;t<nodes;t++) {
if (in_path(i,b,vi[t*3])) {

outvect [t*3+0] = Vi[t*3+0]; //node
outvect[t*3+1] = (int)MAXDIST; //if in path send infinity
outvect[t*3+2] = -1; //7and invalid head node
} else {
outvect[t*3+0] = Vi[t*3+0]; //node
outvect[t#*3+1] = Vi[t*3+1]; //distance
outvect[t*3+2] = Vi[t*3+2]; //head node

1//if in_path
}//for t -- all nodes
{ *TempPacket) ->source = i;
(*TempPacket) ->packetlength = outvect.Length() * 32 + PACKETHEADERSIZE;
(*TempPacket) ->sequencenumber = seqnum++;
(*TempPacket) ->Payload = outvect;
(*TempPacket)->destination = neighbor({b];
OutList.Enqueue (*TempPacket);
NextPacket_Entry().Schedule(0,trig);
1//if neighbor[b] != -1
}//for b -~ all neighbors

//Re-pack node's environment back into the global variables
for (j=0;j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
tempiv [j*MAXLINKS+k] = (int)dtable[j][kl;
for (j=0;7j<nodes;j++)
for (k=0;k<MAXLINKS;k++)
tempiv[nodes*MAXLINKS + j*MAXLINKS+k] = htable[j] {k];
nodemem[i] = tempiv;
SetNodeMemory (nodemem) ;
for (j=0;j<MAXLINKS;j++) NeighMatrix[i*MAXLINKS+j] = neighbor([j];

96

SetNeighbors (NeighMatrix);
if (vi.Length() > 1) {
//Update the Satcom-style RouteMatrix (matrix of next-hops)

for (j=0;j<nodes;j++) {
if (i t=) {

if (routes[j}[0] != MAXLINKS+2 && routes[j}[{0] != -1) {
RouteMatrix{i*nodes+j} = neighbor[routes[j][0]];
} else {
RouteMatrix{i*nodes+j] = -1;
V//if
} else {

RouteMatrix{i*nodes+jl=i;
/i (1 1=)

RDist[i*nodes+j] = routes[j][1];
} //for j

SetRoutingtablememory(RouteMatrix);
SetRouteDistance(RDist);

}//if length Vi > 1

//0utput old-style Satcom matrix
routematrix(RouteMatrix);

delete(TempPacket);
]

//***

// Asynchronous Functions:
inline void exBF: :NextPacket_Run(const TRIGGER_t& NextPacket)

{

SatDSwdpayload_t #*OutPacket;

simtime = TNow();

int i = OutList.Length();

if (i>0) {
OutPacket = (SatDSwdpayload_t *)OutList.Dequeue();
outbound_update(*OutPacket);
delete(OutPacket);

Y//1if i>1

}

/**** User Code Above Here ***x/

B.3 Xref

Because the two routing protocols only route between satellites and SatLab generates the
distances of groundstations and satellites in one table, it is necessary to provide a cross-
referencing feature that tells the simulation which satellite is closest to a particular ground
station. Rather than do this entirely in Designer primitives, the link formation subroutine
from the routing algorithms can be easily adapted to do the job as a stand-alone custom

primitive. The following “xref” primitive does just that.

97

o External Ports:
Input: Update is of type TRIGGER

o External Arguments:
(M) "TranslationVector" is of type "INT-VECTOR"

Description: Memory which stores the node number of the satellite closest to each
groundstation.

(M) "Distance table memoty" is of type "REAL-VECTOR"
(M) "Number of Satellites" is of type "INTEGER"
(M) "Number of GroundStations" is of type "INTEGER"

o Internal Arguments:

* None *

/*
* Module Name : xref
* Template Created By : 3.0
* Author: rjanoso
* Last Modification Date: 1-aug-1996 12:06:33
* Template Date: 1-Aaug-1996 12:06:37
*/

/**** Tncludes and Defines Below Here ****/
#define MAXDIST 1000000000
/**** TIncludes and Defines Above Here ****/

/**** TInstance Definitions Below Here **%+/
// void Init();
/**** Tnstance Definitions Above Here ***x*/

/**** User Constructor Code Below Here ***%/
/**%* Uger Constructor Code Above Here ***%/

/**** User Code Below Here *#**x/

When triggered by a satellite position update cycle, this routine searches through the
distance table memory for the closest satellite to each groundstation and enters the satellite’s
node number in the translation vector element corresponding to the groundstation node

number. A -1 is entered if no satellite is in range.

// Run Functions:

inline void xref::Update_Run(const TRIGGER_t& Update)

{
int a,g,s;
int nodes = NumberofGroundStations + NumberofSatellites;
INTVECTOR_t V = Translationvector;

98

if (V.Length() < NumberofGroundStations)
V.ChangeLength (NumberofGroundStations, -1};

for(g=0; g<NumberofGroundStations; g++) {

//Find closest neighbor

int best = -1;

float bdist = MAXDIST;

for (s=0; s<NumberofSatellites; s++) {
a = Distancetablememory [g*nodes+(s+NumberofGroundStations)};
if (a<bdist) {

best = s;
bdist = a;
Y//if
}//for s -- best and bdist should now have closest sat
V[g] = best;
}//for g

SetTranslationvVector(v);
1

/**** User Code Above Here ****/

B.4 Add Element to Vector
The last custom primitive simply adds some functionality that seemed to be missing
from the provided Designer run-time library. It takes an input vector, increases its length by

one, and places the integer input into the new position.

o External Ports:
Input: InVect is of type INT-VECTOR

Output: OutVect is of type INT-VECTOR
Input: Intln is of type INTEGER

o External Arguments:

* None * ‘

o Internal Arguments:

* None *

/ *

* Module Name : Add Element to Vector
* Template Created By : 3.0
* Author: rjanoso
* Last Modification Date: 17-Aug-1996 17:46:50
* Template Date: 17-Aug-1996 17:46:54
*/

/**** Tncludes and Defines Below Here ***x/
/**** TIncludes and Defines Above Here ****/

/**** TInstance Definitions Below Here ***x/

99

// void Init();
/**** Instance Definitions Above Here ***%x/

/**** User Constructor Code Below Here **x*/
/**** User Constructor Code Above Here **x**/

/**** User Code Below Here #***+*/

// Run Function:
inline void AddElementtoVector::Run(const INTEGER_t& IntIn, const INTVECTOR_t& InVect)

{

int newlength = InVect.Length()+1;
INTVECTOR_t NewVect = InVect;
NewVect.ChangeLength(newlength);
NewVect [newlength-1] = IntIn;
OutVect (NewVect) ;

}

/**** User Code Above Here **x*/

100

APPENDIX C

Modifications to the Darting Algorithm

Correct operation of the Darting algorithm assumes that traffic flows through all
branches of the network; thus eventually disseminating compete topological information to
all nodes. If this is not the case, it is possible for situations to arise where Darting will not
converge to an optimal configuration, and predecessor update packets will be generated
indefinitely. To alleviate this problem, a new type of “ping” packet was added to the
algorithm to enable nodes that detect this type of discrepancy to exetcise the portion of the

network that is in question.

Let a subsection of the network be in the state shown in Figure 47, and let the local state
at node a be as shown in Table 4. Let there be a steady stream of traffic from a to g.

Further, let this traffic be traversing the optimal path a-c-d-h-g at a cost of 4.

Table 4: Initial State of
Node A

Known links at a:

a->b=1
a->c=1
b->f=1
c->d=1
c->e=2
d->h=1
e->g=3
f->g=2
g->h=1

Figure 47: Degenerate Figure 48: Degenerate
Topology 1 Topology 2

Now, let the link from d to h fail, as shown in Figure 48. When a next attempts to

transmit to g, it will choose to go though ¢ with an estimated cost from c to g of 3. For this

101

first packet, ¢ will agree with the estimate of 3 and forward the packet on to node d. Node
d, having detected the failure of the d-h link, will return the packet to node ¢ along with the
information about the failed link. Node ¢ will then realize that its best path to g lies through
e and will forward the packet accordingly. No further update packets are sent because the
predecessor update mechanism only updates one node upstream from the point at which

the discrepancy is detected.

Now for the next packet, a (not having any new information) will again choose to
forward through node c. At this point, however, ¢ will realize that a is using outdated
information because ¢’s cost to g is now 4, not 3. Unfortunately, when ¢ builds the update
packet to send back to a, it enters the link information from the downstream nodes as
perceived by node ¢. 'Thus ¢ will update a with {c-d=1, c-e=2, e-g=2, g-h=1}. However, none
of this is new information to node a! Thus, a’s behavior will not change, and it will continue
to estimate the cost from ¢ to g as 3 (via node d) and ¢ will continue to try to update a with

the correct cost of 4, via node e. This will go on indefinitely.

The problem occurs because in this instance, no traffic ever returns to node a through
the path from node d. A mechanism is needed to force traffic to flow through that path to
break the update cycle. Toward this end, a new type of “ping” packet was introduced into
the protocol, and the contents of the fields in a predecessor update packet were slightly
altered. The cost field was changed to reflect the cost to get from node ¢ to node g (the
cost a should have calculated), and the source field in a type 3 packet now has the value of

"g" instead of "c".

Now, when node a receives the predecessor update packet from node c, it can check to
see if the cost asserted by node ¢ matches the cost it calculates from its local tables (after
being updated with the new link information from c). If there is still a discrepancy, node a
generates a ping packet addressed to node d. The ping packet is treated just like a data
packet by each of the intermediate nodes, which place their local link data into the SCL field

of the packet. Once the packet reaches node d, it is turned around by reversing the soutce

102

and destination fields, and returned to node a. Thus, the path from d to a is exercised, and

a will receive the information about the failed link and adjust accordingly.

103

AdR87

Alt94

An[.91

ArA94

Ash90

BaA93

BaC96

BiH87

CaA87

Cha89

Che86

ChR89

Bibliography

W. S. Adams and L. Rider, “Circular polar constellations providing continuous
single or multiple coverage above a specified latitude,” The Journal of the
Astronautical Sciences, 35: 155-192 (April-June 1987)

Alta Group. Bones Designer Modeling Guide, Chapter 4, Alta Group of
Cadence Design Systems, Foster City, CA, 1994.

Ansari, N., and Liu, D. "The Performance Evaluation of a New Neural
Network Based Traffic Scheme for a Satellite Communication Netwotk,"
GLOBECOM 1991. 110-114. New York: IEEE Press, 1991.

Arulambalam A., and Ansari, N. "Traffic Management of a Satellite
Communication Network Using Mean Field Annealing," IEEE 1994
International Conference on Neural Networks. 3577-3582. New York: IEEE
Press, 1994.

Ash, G. "Design and Control of Networks with Dynamic Nonhirearchical
Routing," IEEE Communications Magazine, 28: 34-40 (October 1990).
Balasekar, S., and Ansari, N. "Adaptive Map Configuration and Dynamic

Routing to Optimize the Performance of a Satellite Communication Network,"
GLOBECOM 1993. 986-990. New York: IEEE Press, 1993.

Banks, J., Carson, J., Nelson, B. Discrete-Event System Simulation, 447-449.
Prentice Hall, Upper Saddle River, NJ, 1996.

Binder, R., Huffman, S., Gurantz, 1., and Vena, P. "Crosslink Architectures for
a Multiple Satellite System," Proceedings of the IEEE, 75: 74-81(Jan 87).
Cain, J., Adams, S., Noakes, M., and Kryst, T. "A Near-Optimum Multiple
Path Routing Algorithm for Space-Based SDI Networks," Vehicular
Technology Conference 1994. 578-585. New York: IEEE Press, 1987.

Chakraborty, D. “Survivable Communications Concept via Multiple Low-

Earth-Orbiting Satellites,” IEEE Transactions on Aerospace and Electronic
Systems, 25: 881-889 (1989).

Cheriton, D. "VMTP A Transport Protocol For The Next Generation Of
Communication Systems," SIGCOMM 1986. 406-415. New York: ACM
Press, 1986.

Cheng, C., Riley, R., Kumar, S., and Garcia-Luna-Aceves, J. “A Loop Free
Extended Bellman-Ford Routing Protocol Without Bouncing Effect,”
SIGCOMM 1989. 224-236. New York: ACM Press, 1989.

104

Clj89
CoL90

FCCI1

Fol95

GaG9Y%4

GrZ89
Jat84
Kle75
KoJ88

KoK9%4

KuS84

Leo91
PrB86

PuP92

Rou93

Clark D., Jacobson V., Romkey J., and Salwen H., “An analysis of TCP
processing ovethead”, IEEE Communications Magazine, 27: 23-29 (June 1989)

Corman, T., Leiserson, C., and Rivest, R. Introduction to Algotithms, 527-529.
MIT Press, Cambridge MA, 1990.

Federal Communications Commission. “Comments of the Hughes Aircraft
Company” In the Matter of the Application of Motorola Satellite
Communications Inc.,, For a Low Earth Orbit Based Mobile Satellite
Communications System. File Nos. 9-DSS-P-91(87) CS§-91-010, 3 June 1991.

Foley, T. "WRC backs broadband satellite plan," Communications Week
International, via World Wide Web, http://techweb.cmp.com/cwi, Nov 1995.

Ganz, A., Gong, Y., and Li, B. “Performance Study Of Low Earth Orbit
Satellite Systems,” IEEE Transactions on Communications, 42: 1866-1871
(Feb-April 1994).

Gross, J and Ziemer, R. "Distributed Routing Network Performance In
Hostile Environments," Proceedings of the SPIE, 1059: 22-26 (1989).

Jaffe, J. "Algorithms For Finding Paths With Multiple Constraints," Networks
14: 95-116 (1984)

Kleinrock, Leonard. Queueing Systems, Volume 1: Theory John Wiley &

Sons, New York, 1975.

Kosowsky, R., Jacobs, L., and Gillhousen, K. "ARNS: A New Link Layer
Protocol," MILCOM 88. 515-519. New York: IEEE Press, 1988.

Kota, S., and Kallus, J. "Reservation Access Protocol for a2 Multiplanar ATM
Switched Satellite Network," MILCOM 1994. 1048-1051. New York: IEEE
Press, 1994.

Kung, R., and Shacham, N. "An Algorithm For The Shortest Path Under
Multiple Constraints," GLOBECOM 84. 355-359. New York: IEEE Press,
1984.

Leopold, R. "Low Earth Orbital Global Cellular Communications Network,"
Proceedings of the ICC, 35: A.2.1 - A.2.4 (1991)

T. Pratt and C. W. Bostian, Satellite Communications, John Wiley & Sons, New
York, 1986.

Pullman, M. A, Peterson, K.M. and Jan, Y. “Meeting The Challenges Of
Applying Cellular Concepts To LEO SATCOM Systems,” ICC 1992. 770-
773. New York: IEEE Ptess, 1992.

Rouffet, D. "GLOBALSTAR: a Transparent System," Electrical
Communications: 84-90 (Q1, 1993)

105

Sat95

Sha88

ShA92

Ste96

TsC9%4

TsM95

Tuc93

VoP93

Wal77

Wis95

WuM94

YaG93

Alta Group. Satlab User’s Guide, Chapter 7, Alta Group of Cadence Design
Systems, Foster City, CA, 1995.

Shacham, N. "Protocols For Multi-Satellite Networks," MILCOM 1988. 501-
505. New York: IEEE Press, 1988.

Shankar, A. Udaya, Alaettinoglu, Cengiz, Dussa-Zieger, Klaudia, and Matta,
Ibrahim. “Performance Compatison of Routing Protocols under Dynamic and
Static File Transfer Connections,” SIGCOMM 1992. 39-52. New York: ACM
Press, 1992,

Stenger, D., The Determination of the Minimum Acceptable Constellation for the Lridium
Low Earth Orbit Satellite Network. MS thesis, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH AFIT/GCS/ENG/96D, December 1996

Tsai, Z., Chuang C., Cjang, J., and Huang, C. "Performance Of a Global
Circuit Switched Satellite Communication Network," Vehicular Technology
Conference 1994. 1624-1629. New York: IEEE Press, 1994.

Tsai, K., and Ma, R. "Darting: A Cost Effective Routing Alternative For Large
Space-Based Dynamic Topology Networks," MILCOM 1995. 682-687. New
York: IEEE Press, 1995.

Tuck, E. "The Calling Network: a global telephone utility," Space
Communications, 11: 141-161 (1993)

Vojcic, B. R., Pickholtz, R. L., Milstein L. B. “Effects of Imperfect Power
Control on a CDMA System Operating Over a Low Earth Orbit Satellite
Link,” MILCOM 1993. 973-977. New York: IEEE Press, 1993.

J- G. Walker, “Continuous whole-earth coverage by circular-orbit satellite
patterns,” Royal Aircraft Establishment, Technical Report 77044, September
1977.

Wisloff, T. "A tabulated ovetview of big LEOs," via Wotld Wide Web,
Tor.E.Wisloff@idt.unit.no, Oct 1995.

Wu, W., Miller, E., Pritchard, W., and Pickholez, R. "Mobile Satellite
Communications," Proceedings of the IEEE, 82: 1431-1446 (Sept 1994)

Yang, Wen-Bin and Geraniotis. “Performance Analysis Of Networks Of Low
Earth Orbit Satellites With Integrated Voice/Data Traffic,” MILCOM 1993.
978-982. New York: IEEE Press, 1993.

106

Vita

Richard F. Janoso wessaworeuua i trintpsnyinkinlppemrimeh. He
graduated from high school in Allentown, Pennsylvania in 1986 and attended Lehigh
University in Bethlchem, Pennsylvania, from which he received 2 Bachelor of Electrical
Enginecring degee in 1990. He received his United States Air Force commission from the
Reserve Office Training Cotps and entered active duty in February 1991. His first
assignment was to the 485" Engineering Installadon Group, Griffiss AFB, New York,
where he served as a transmission systems engineer, local area network design engineer, and
Chief, Cable Installation Branch. He entered the School of Engincering, Air Force Institute
of Technology, in Junc 1995. He is a member of Tau Beta Pi and Eta Kappa Nu.

107

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering and maintaining the data needed, and completing and reviewing the collection of information. Sendcomments r

Public reporting burden for this collection of information s estimated to average 1 hour der response, inciuding the time for reviewing instructions, searching existing data sources,

; ¢ . ; : | 2 e?arding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 jetferson
Dawvis Highway, Sutte 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

2. REPORT DATE

1. AGENCY USE ONLY (Leave blank)
December 1996

Master’s Thesis

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
ERFORMANCE ANALYSIS OF DYNAMIC ROUTING PROTOCOLS
E\I A LOW EARTH ORBIT SATELLITE DATA NETWORK

6. AUTHOR(S)
Richard F. Janoso

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/96D-08

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING

Dr. Joseph Liu
HQ SWC/AES
730 Irwin Ave, Suite 83

Falcon AFB, CO 80912-7383

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

overhead were made.

13. ABSTRACT (Maximum 200 words)
Modern warfare is placing an increasing reliance on global communications. Currently under development are

several Low Earth Orbit (LEO) satellite systems that propose to deliver voice and data traffic to subscribers
anywhere on the globe. However, very little is known about the performance of conventional routing protocols
under orbital conditions where the topology changes in minutes rather than days. This briefing compare s
two routing protocols in a LEO environment. One (Extended Bellman-Ford) is a conventional terrestrial routing
protocol, while the other (Darting) is a new protocol which has been proposed as suitable for use in LEO networks.
These protocols were compared via computer simulation in two of the proposed LEO systems (Globalstar and
Iridium), under various traffic intensities. Comparative measures of packet delay, convergence speed, and protocol

14. SUBJECT TERMS

low earth orbit, routing, satellite, network simulation

15. NUMBER OF PAGES
117

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Stg Z33-18
298102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It isimportant to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Mustcite at least the year.

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 -30 jun 88).

Block 4. Title and Subtitle. Atitleistaken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this shou!d follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information notincluded elsewhere such as:
Prepared in cooperation with...; Trans. of...; To be
published in.... When areportisrevised, include
astatement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - Seeauthorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). if form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entryin this block is necessary if
the abstract is to be limited. .If blank, the abstract
is assumed to be unlimited.

*U.8.GP0:1993-0-336-043

Standard Form 298 Back (Rev. 2-89)

